
1

CSE/EE 461

Retransmission and Timers

2

Last Time …

• More on the Transport Layer

• Focus
– How do we manage connections?

• Topics
– Three-Way Handshake
– Close and TIME_WAIT Physical

Data Link
Network

Transport

Session

Presentation
Application

2

3

This Lecture

• Focus
– How do we decide when to retransmit?

• Topics
– RTT estimation
– Karn/Partridge algorithm
– Jacobson/Karels algorithm Physical

Data Link
Network

Transport

Session

Presentation
Application

4

Deciding When to Retransmit

• How do you know when a packet has been lost?
again:

Send(p);
Wait(t);
if (!p.acked)

goto again;

• How long should the timer t be?
– Too big: inefficient (large delays, poor use of bandwidth)
– Too small: may retransmit unnecessarily (causing extra traffic)
– A good retransmission timer is important for good performance

• Right timer is based on the round trip time (RTT)
– Which varies greatly in the wide area (path length and queuing)

3

5

Congestion Collapse

• In the limit, early retransmissions lead to congestion collapse
– Sending more packets into the network when it is overloaded

exacerbates the problem of congestion
– Network stays busy but very little useful work is being done

• This happened in real life ~1987
– Led to Van Jacobson’s TCP algorithms, which form the basis of

congestion control in the Internet today [See “Congestion Avoidance
and Control”, SIGCOMM’88]

– Observed 1000x bandwidth reduction between two hosts separated by
400 yards.

– Led to researchers asking two questions:
• Was TCP/IP misbehaving?
• Could TCP/IP be “trained” to work better under ‘absymal network

conditions’

6

A Scenario

Receiver window size is
16KB.

Bottleneck router buffer
size is 15 KB.

Data bandwidth is about
20KB/s

Sender Receiver

4

7

TIME (SEC)

S
eq

u
en

ce
 #

8

Effects of Early Retransmissions

Send Time (sec)

P
ac

ke
t S

eq
ue

nc
e

N
um

be
r

(K
B

)

Slope is bandwidth.

Steep smooth
upward slope
means good
bandwidth.

Downward slope
means
retransmissions
(bad).

D
es

ira
bl

e
be

ha
vi

or

Actual behavior

Timeout

5

9

If only…

• We knew RTT and Current Router Queue Size,
– Then we would send MIN(Router Queue Size, Effective

Window Size)
– And not resent a packet until it had been sent RTT ago.

• But we don’t know these things, so we have to figure
them out.

• And they may change dynamically due to other data
sources

• Buffers at routers used to absorb bursts when input rate > output
• Loss (drops) occur when sending rate is persistently > drain rate

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

Congestion from Multiple Sources

Packets queued here

6

11

Interpacket Spacing

Interpacket spacing mirrors that of slowest link

Inter-ACK spacing mirrors that of slowest downstream link

12

1988 Observations on Congestion
Collapse

• Implementation, not the protocol, leads to collapse
• “Obvious” ways of doing things lead to non-obvious

and undesirable results
– “send eff-wind-size # packets, wait rtt, try again”

• Remedial algorithms achieve network stability by
forcing the transport connection to obey a ‘packet
conservation’ principle.
– For a connection in ‘equilibrium, that is, running stably with a

full window of data in transit, the packet flow is “conservative”:
a new packet is not put into the network until an old packet
leaves.

7

13

Resulting TCP/IP Improvements

• Slow-start
• Round-trip time variance estimation
• Exponential retransmit timer backoff
• More aggressive receiver ack policy
• Dynamic window sizing on congestion
• Clamped retransmit backoff (Karn)
• Fast Retransmit

Packet Conservation
Principle

Congestion control means: “Finding places that violate
the conservation of packets principle and then fixing
them.”

14

In order to conserve packets

1. The connection must reach equilibrium.
– Hurry up and stabilize!
– When things get wobbly, put on the brakes and reconsider

2. A sender must not inject a new packet before an old packet has
exited.
– A packet “exits” when the receiver picks it up.
– Or it gets lost

• Damaged in transit
• Dropped at a congestion point
• Fewer than 1% of packets get damaged

– Ack or packet timeout signals that a packet has “exited.”
– Acks are easy to detect.
– Good timeouts are harder…. All about estimating RTT.

3. Equilibrium is lost because of resource contention along the way.
– New competing stream appears

8

15

1. The connection must reach equilibrium.

16

1. Getting to Equilibrium -- Slow Start

• Goal
– Quickly determine the appropriate window size

• Strategy
– Introduce congestion_window (cwnd)
– When starting off, or soft restarting, set cwnd to 1

• A soft restart occurs if TCP decides that a packet has been lost but
there are no packets in transit

– No acks coming
– For each ack received, add 1 to cwnd
– When sending, send the minimum of receiver’s advertised window

and cwd
• Guaranteed to not transmit at more than twice the max bw, and for

no more than 2 RTT.
– (bw delay product)

9

17

Cwnd doubles every RTT;

Opening the window of size

W takes time (RTT)log2W.

18

10

19

2. A sender must not inject a new packet before an old packet has exited.

20

2. Packet Injection. Estimating RTTs

• Do not inject a new packet until an old packet has left.
– 1. Ack tells us that an old packet has left.
– 2. Timeout expires tells us also.

• Gotta estimate RTT properly.
• Strategy 1: Fixed RTT.

– Simple, but probably wrong. (certainly not adaptive)
• Strategy 2: Estimate based on past behavior.

– Tactic 1: Mean with exponential decay
– Tactic 2:

11

21

Simple Estimator

• Simple algorithm:
– For each packet, note time sent and time ack received
– Compute RTT samples and average recent samples for timeout

EstimatedRTT = (1-g)(EstimatedRTT) + g(SampleRTT)

– This is an exponentially-weighted moving average (low pass filter) that
smoothes the samples with a gain of g

• Big g can be jerky (think static on a walkie talkie)
• Small g can be soothing, but slow to respond (more stable)
• Typically, g = .1 or .2, --> stable is better than precise

– In other words, a lousy estimate of the RTT right now causes much more damage than an ok
estimate right now followed by a better one a little later on.

» The Airplane Rule.

– Conservatively set timeout to small multiple (2) of the estimate
Timeout = 2(EstimatedRTT)

22

12

23

Bad Estimators and the Bad Things
They Do

• Problem:
– Variance in RTTs gets large as network gets loaded
– So an average RTT isn’t a good predictor when we need it most

• Time out too soon, unnecessarily drop another packet onto
the network.

• Timing out too soon occurs during load increase
– if we time out when load increases but packet not yet lost, then

we’ll inject another packet onto the network which will
increase load, which will cause more timeouts, which will
increase load, until we actually starting dropping packets!

24

Jacobson/Karels Algorithm

• Solution: Compute timeout on basis of:
– Mean round trip time, AND
– Mean deviation (mean prediction error)

• TimeOut = f1 * (EstimatedRTT) + f2 * (EstimatedDeviation)
• EstimatedRTT --> running guess for RTT
• EstimatedDeviation --> running guess for prediction error

– Consider what happens when:
• EstimatedRTT is really good
• EstimatedRTT is really bad

• Trick is to compute these estimates cheaply

13

25

Cheap Algorithm For Keeping Running
Tabs

• Solution: Track variance too.

– Difference = SampleRTT – EstimatedRTT
– EstimatedRTT = EstimatedRTT + (δδδδ x Difference)
– Deviation = Deviation + δδδδ(|Difference|- Deviation)

– Timeout = µµµµ x EstimatedRTT + φφφφ x Deviation
– In practice, δδδδ = 1/8, µµµµ = 1 and φφφφ = 4

• See paper for details

26

A Fast Algorithm for RTT Mean and
Variation

• Let a = estimated round trip time, v = estimated error, g = gain (0 <g < 1), m = new sampled
round trip time

• a = (1-g)a + gm // compute new estimate using gain
• a = a + g(m-a) // rearrange terms:

– a is a prediction of next measurement, and (m-a) is the “error” in that prediction.
– so, the new prediction is the old prediction plus some fraction of the prediction error.
– The prediction error is the sum of two components:

• Er = noise (random unpredictable effects like fluctations in competing traffic)

• Ee = bad choice of a
• a = a + g Er + g Ee

– The term g Ee kicks a in the right direction towards the real estimate
– The term g Er kicks it off in the random direction
– Over many samples, the random errors cancel each other so we get closer and closer to the real estimate
– But, g represents a compromise.

» Big ‘g’ means that we get a lot of value out of a prediction error, but it also means that the random
errors introduce a lot of noise.

– Since g Ee moves a in the right direction regardless of g, we’re better off using a small g and waiting a bit
longer to get a better estimate than to very quickly get a lousy estimate

• Or,
– Err = (m - a) // Sampled Error
– a = a + g (Err) // Estimate of round trip time
– v = v + g(|Err| - v) // Estimate of error

• Not necessary to use same gain; in general want to force timer to go up

14

27

Estimate with Mean + Variance

28

Karn/Partridge Algorithm

• Problem: RTT for retransmitted packets ambiguous

• Solution: Don’t measure RTT for retransmitted packets and do not
relax backed off timeout until valid RTT measurements

Sender Receiver

Original transmission

ACK

S
am

pl
eR

T
T

Retransmission

Sender Receiver

Original transmission

ACK

S
am

pl
eR

T
T

Retransmission

15

29

3. Equilibrium is lost because of resource contention along the way.

• Buffers at routers used to absorb bursts when input rate > output
• Loss (drops) occur when sending rate is persistently > drain rate

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

Congestion from Multiple Sources

Packets queued here

16

31

3. Congestion Avoidance

• An avoidance strategy must have two components
– Network must signal that congestion is, or is about to, occur
– Endpoints must decrease load when signal occurs and increase

it otherwise

• Assumption:
– Packet loss always due to congestion and timeout always due to

lost packet

32

Key Concepts

• Packet conservation is a fundamental concept in TCP’s congestion
management
– Get to equilibrium

• slow start
– Do nothing to get out of equilibrium

• Good RTT to determine when to inject a packet
– Adapt when equilibrium has been lost due to other’s attempts to get

to/stay in equilibrium
• Congestion Avoidance

A good retransmit timer is important for good performance
– Too long leads to poor performance
– Too short leads to wasted bandwidth

• An estimated timeout must adapt to Internet queuing
– High variance at high load

