
Fishnet Assignment 1:
Flooding and Neighbor Discovery

Due: Wednesday, October 13 at the beginning of class
In-class demo: Friday, October 15

CSE/EE 461: Autumn 2004

In this assignment, you will work in teams of two to develop a Ruby program to serve as
a Fishnet node. Your node will participate with those written by other students in an ad-
hoc network run on the iPAQs and exchange simple messages. We will extend the nodes
and network with functionality throughout the quarter. The goals of this first assignment
are to become familiar with the Fishnet development environment and to understand
packet forwarding concepts.

1 Preliminaries
Before you write any code, make sure you work through the Introduction to Fishnet
handout. This covers basics such as the Fishnet development environment and how to set
up a Fishnet network. It also tells you key things to do before you try to run your node on
the live class network using your iPAQ. You should have an iPAQ by the end of this
week. You don’t actually need to use it until you have working code, since you develop
and test your code on the CSE Lab machines; the iPAQ is mainly for running your
working code on a live network.

2 What To Develop
Your assignment is to modify proj/node.rb so that it acts as a Fishnet node with the
following two types of functionality. (Note that the version of node.rb we provide already
supports a basic “ping” protocol; you should be careful to keep that portion of the code
working, as we will need it for part 2.) In addition to your code, you will turn in a brief
document (probably less than a page) stating your design decisions. You may want to
write this before starting your code and update it as you proceed.

1. Flooding. Your node “floods” each packet it handles so that it is sent to all other
nodes. You must decide exactly how your flooding function will work (there is
probably more than one choice) but it must be accomplished subject to the following
constraints:
• The flooding logic must work for all kinds of packets (e.g., Ping and PingReply

packets) but ONLY use packet information accessible from the class Packet as
defined in packet.rb.

• Flooding must deliver a copy of every packet that is sent by any node to all of the
other nodes until it reaches its destination. At each node, the copy of the packet
that is delivered should be processed further only if the packet is destined for that
node. A packet may be destined for a node either directly, if the destination
address of the packet is the node address, or as part of a network-wide broadcast,
if the destination address is the broadcast address.

• Notwithstanding the above, flooding will fail to deliver a copy of a packet to all
other nodes that will process it in a couple of situations. First, packets can be lost
during transmission, e.g., corrupted due to noise on the wireless link, detected as a
checksum failure. Second, as part of using packets of type class Packet you must
implement functionality to update the TTL field when packets are forwarded. This
will cause packets to be discarded without being forwarded if their TTL reaches

zero.
• Your flooding design must prevent packets from circulating indefinitely. This

requires that your node works out when it has already performed its flooding
work for a given packet and not flood it again. The header fields in Packet (the
sequence number and the source address in particular) are well suited to this task.

• Your flooding must work for all network topologies including those that change
as nodes move, yet without a priori knowledge of the topology. You should not
build up maps of which nodes are where in the network. Building up maps, called
routing, can greatly improve the efficiency of communication but can be
surprisingly complicated – we will study it in the next assignment.

• As a hint, you can send packets to the Fishnet broadcast address
($BroadcastAddress defined in packet.rb); to do this, you simply provide this
address as the first parameter to Fishnet::sendPkt. This allows you to send a
packet to all of your neighboring nodes (within radio range or directly connected
as part of the managed overlay) without knowing their individual node addresses.
There is no other way to send your neighboring nodes a message until you have
discovered their identities, and of course, you can’t discover their identities until
they send you a packet (which they can’t do until you send them a packet!)

• As a hint, to simplify your implementation you can assume that the network
contains only a small number of nodes (at most a few hundred), all of which have
small integer addresses. Later assignments will deal with how to work with larger
node addresses and networks, but this is not necessary for the first assignment.

The reason you are implementing flooding is that, without it or some more complicated
alternative, one node cannot send a message to a distant node in the network that is out of
radio range. Flooding uses other, in-between nodes to relay or forward the message.
Further, we will need flooding in the next assignment, since it is used as a component of
other network protocols, such as link-state routing (Peterson 4.2). Depending on your
implementation, flooding can be an efficient way to provide point-to-all broadcast
communication, and of course flooding is very inefficient as a way to send a point-to-
point message from one node to another. However, flooding will get us started with
networking and motivate the need for more efficient techniques (routing) in subsequent
assignments.

A good flooding design (or network protocol in general) will use no more packet
transmissions or node resources than necessary to accomplish its function. As you
develop your design, you should check that it works (all nodes receive a copy of each
transmission they need to process and yet the flood eventually stops) and see how many
packets you are using to make it work. You should do this for several different topologies
(see topogen.rb for some options).

2. Neighbor Discovery. Your node continuously probes the network at a low rate to
discover its immediate neighbors in the network topology. Again, you devise a
solution within these constraints:
• You must not use any additional kinds of packets. This task can be achieved by a

careful combination of the functions that you have already built (ping, flooding,
the network broadcast address, and the TTL field).

• Neighbors disappear (when nodes move away or are turned off) as well as appear
(when nodes move into range or are turned on). You will want to print out the
current list of neighbors so you can see who they are, perhaps only printing when
there is a change.

• As a tip, you will need to use timers to implement continuous, low-rate
background activity. Be very careful with automated mechanisms, especially
when using flooding and broadcast! They should operate on the timescale of at

least tens of seconds (tens of thousands of milliseconds in the API calls!) or you
may inadvertently bring down the building wireless network.

The reason you are implementing neighbor discovery is to provide some way to find out
when your iPAQ comes into contact with other class nodes. You may want to play a
sound on your iPAQ to alert you this situation. Once you know your neighbors, you can
ping them directly using their addresses. This is what you will need to do as part of turn-
in.

A good design will use very little bandwidth yet keep a reasonably accurate set of
neighbors. As a challenge, note that we can implement neighbor discovery with echo
packets and flooding without having packets be processed at any nodes except the
neighboring nodes!

The above constitutes the intellectual bulk of your assignment. It is probably simplest to
implement the functions in the order they are given above. As you write your program,
note that our (fairly verbose) sample solution is not especially long. If you are writing
hundreds of lines of code then you are probably doing something the hard way and
should talk to us about it. Make sure you comment your code so that your protocol design
choices are apparent to us. Good comments don’t belabor the obvious (e.g., “calling the
main loop”). Rather, good comments tell us how you have arranged your code and
assumptions you have make, as well as anything non-obvious.

3 Design Philosophy
There are two key issues to bear in mind as you design your solutions, for this assignment
and all future ones.

Robustness Principle. An important rule of thumb in building network protocols is “Be
conservative in what you do, be liberal in what you accept from others.” (RFC 793,
Transmission Control Protocol, http://www.rfceditor.org/rfc.html). This helps different
implementations of a protocol (e.g., the sample solution, your program, and your
classmates’ programs) to work together reliably. This principle means you should be
careful to send packets that strictly comply with the intended usage of the packet formats
as described in packet.rb so that other nodes can handle them, but you should do the best
you can with whatever packets you receive from other nodes. Of course, you will get it
right, but they will send broken packets. In particular, other nodes shouldn’t be able to
crash your node by sending it bad packets. If your node does crash, it’s your
responsibility to find out what happened and fix it.

Interoperable Designs. It is also possible that different students will design protocols that
are not compatible with each other in the class Fishnet, even if everyone’ s code is robust
as defined above. We hope that strict adherence to the packet formats and their intended
usage will result in compatible protocols, without any further need for specifications or
constraints on your designs, but we can’t guarantee this. Therefore, you must check that
your design is legal in that it interoperates with the reference executable that we provide.
You must do this in your own, private fishnet before attempting to join the shared, class
network running on the iPAQs or you may interfere with the proper functioning of the
class network. It is everyone’ s responsibility to work towards compatible, interoperable
protocol designs by checking for incompatibilities and discovering what further design
details we need to make together, as a class. This is a very real issue in the Internet, and
part of what you will learn during the course.

4 Discussion Questions
1. Now that you have written an event driven program, describe one advantage and one

disadvantage of this style of programming.
2. Flooding includes a mechanism to prevent packets from circulating indefinitely, and

the TTL field provides another such mechanism. Why have both? What would
happen if we only had flooding checks? What would happen if we had only the TTL?

3. When your node pings a remote node using its particular destination address (rather
than the network broadcast address), how many requests does the remote node
receive and why? How many responses does your node receive and why?

4. When your node pings a remote node using its particular destination address (rather
than the network broadcast address), how many request and response packets do other
nodes handle? How many of these packets are unnecessary, and could probably be
eliminated with smarter networking protocols?

5. Describe one design decision you could have made differently (for this thought
experiment, you are allowed to change Fishnet) and the pros and cons compared to
the decision you made.

Write only a few, short sentences for each of these questions!

5 Turn-In
For this and future assignments, you need to demonstrate that your iPAQ works in the
class network as well as turn in both electronic and paper material as follows.

For the due date, Wednesday, October 13:

1. Use the simulator to run scripts/floodtest.fish and scripts/discoverytest.fish. Capture
the entire output of the simulation using, for example, the script command. Make sure
debugging is on so that we can see what packets are being sent and received. Mark up
the printout to tell us what is going on.

2. Use the turnin program on the Linux servers to electronically submit one or more
ruby files containing the entire contents of the proj directory – in other words, all the
files containing the source code for your solution. You must do this before class on
the day that it is due. The code you send us should run correctly if we invoke
lib/fishnet in the class distribution.

3. In class on the due date, hand in one stapled hard copy write up, with both partners’
names on it, containing:

a. A printout of the source code you submitted electronically.
b. A brief write-up (probably less than a page) of your design decisions.
c. A printout of any output we have asked you to capture.
d. Short answers to the discussion questions.

For the in-class demo on Friday, January 15:

1. Load your code onto your iPAQ. (You will receive instructions with the iPAQ.)
2. Use your iPAQ to ping our fishnet node running in the Network Lab (Allen 391)

by using its specific address. You just need to get within radio range and discover
its address. You can identify our node as the one sending periodic pings to
neighboring nodes with packet contents “ Fishnet is alive”.

3. Bring your iPAQ to class on the demo date and participate in the class-wide
Fishnet.

