CSE461.: Discussion section, January 9, 2002

Upcalls
In a conventiona structured program, we have an explicit outline of program flow:

main {
do first();
do_second();
if (..){
do _third();
}else{
do_fourth();
}
exit(0);
}

In a networking program, we don’'t have a well-defined sequence of events. we have to
handle things in the order they hagppen in the “red world”.

Handle packet from Alice
Handle packet from Bob
Handle a gtring input by the User
Handle packet from Alice

How do we structure such aprogram? One answer: upcdls.
An “upcal” occurs when the system cdls one of the program’s functions.

Instead of explicitly telling the system the sequence of things to do, we instead tell it
what to do whenever some event occurs:

main {
fish_recvhook(receive packet);
fish_keybhook(read_string);
fish_ main();

}

Thistells the system that when it recelves a packet, it should cal recelve packet and
when it getsaline of keyboard input, it should call reed _gtring.



Function pointers
But how do wetdl the sysem what functionsto cal? Answer: Function pointers.

Function pointers give us flexibility
We CAN gtore a pointer to afunction in avariable.
We CAN cdl the function pointed to by a function pointer.
We CANNOT modify the functions themsdves using the pointers.

This dlows usto specidize generic code: we give the system a pointer to the
function wewant it to cal a runtime.

Function pointer sample program:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

/Il Create a typedef naned greeting_type for the type
[lvoid (*) (char *,char *)
typedef void (*greeting_type) (char *,char *);

void print_greeting(char *first_name,char *last_nane) {
printf("Hello: % %\n",first_nane, | ast_nane);
}

/1 Take a function pointer as a paraneter and call this function
voi d use_func(void (*ptr) (char *,char *)) {

/[l Call the function pointed at by ptr()

ptr("Sushant","Jain");
}

int mai n(void) {
/I Directly make a function pointer vari abl e;
void (*function_ptr) (char *,char *);
/1Use a typedef to make a function pointer variable
greeting_type function_ptr?2;

/] Assi gn and use the pointer
function_ptr = &print_greeting;
function_ptr("Eric","Lemar");

/1 Assign and use the pointer
function_ptr2 = &print_greeting;
function_ptr2("Janet", "Davis");

//Pass a function pointer to use_func
use_func(print_greeting);

}

Output:

Hell o: Eric Lenmar
Hel | o: Janet Davis
Hel | o: Sushant Jain



