
CSE/EE 461 Lecture 26
Course Wrapup

Tom Anderson
tom@cs.washington.edu

Security Lessons

● Hard to resecure a machine after penetration
■ how do you know you’ve removed all the

backdoors?

● Hard to detect if machine has been
penetrated
■ Western Digital example

● Any system with bugs is vulnerable
■ and all systems have bugs: fingerd, ping of death,

Code Red, nimda)

Soapbox

● Information = property
■ is it ok to break into a computer system if

you don’t intend to steal anything -- just to
look around?

Course Topics

● Internet architecture
■ how a web request works, from click to display

– DNS lookup, connection setup, request/response to
server, IP routing, media access, wire signalling, …

■ end to end principle

● Link layer
■ Signal transmission
■ Checksums and CRC’s
■ Media access (Ethernet)

Course Topics

● Routing (IP)
■ forwarding and addressing mechanics
■ link state and distance vector routing (OSPF)
■ interdomain routing (BGP)
■ server load balancing and NATs

● Transport (TCP)
■ ARQ and sliding window
■ Connection setup/teardown and flow control
■ Remote procedure call
■ Congestion control: RTT estimation and window size

Course Topics

● Services
■ DNS lookup, caching and replication
■ distributed cache coherence

● Multicast
■ forwarding, routing, retransmission, congestion control

● Real-time
■ scheduling and buffer management
■ resource reservations

● Security
■ encryption and why that’s not enough

Internet Design Principles

● End to end principle
■ Expect failures to occur at every step, so end hosts

must be ultimately responsible for error recovery
■ example: TCP checksum, sliding window

● Soft state
■ if possible, state should be recoverable after a failure
■ example: link state routing messages are resent

periodically, whether needed or not

● Design for scalability
■ using backoff: Ethernet, TCP congestion control
■ using hierarchy: IP addresses, DNS, routing (BGP)
■ using neighbors: IGMP, multicast retransmissions

The Future: Reliability

● Internet has ~ 98-99% uptime
■ measured end to end: can two hosts

communicate?
■ telephone network: 99.99% uptime
■ air traffic control: 99.999% uptime

● How do we build more reliable systems?
■ Internet effective at masking router/link failures

– “fail stop” errors: system crashes and reboots

■ Not as good at more arbitrary failures
– Operational mistakes, programming errors, malicious

attacks

How robust is the Internet to fail-stop problems?

On Sept 11…

What about arbitrary failures?

● Lots of examples where more arbitrary failures
have caused large problems
■ misconfigured routers at Virginia ISP (AS7007)

advertised zero cost routes to everywhere (April 97)
■ caused nearby AS’s to send all their traffic to that AS
■ disrupted connectivity for hours
■ Another example (RFC 2525, 1999): 18 TCP bugs

known to be lurking out there

● Thesis: Need a new protocol design
methodology to prevent these kinds of problems

ARPANET Link-state Flooding

● In link state routing, routers exchange updates
with their neighbors. These are flooded so they
reach everyone. Then they are used to calculate
routes.

● Sequence numbers are used to order updates.
ARPANET used modulo arithmetic to decide
which update is new.

 A

Update A
floods to
all nodes

A

B

0

Problem – an endless flood

● One night the ARPANET stopped working. A
corrupt router had injected messages that led
to an endless sequence of updates …

● This was hard to fix – purge entire network of
bad data

 A, B, CL A<B<C<A<B<C< …

A

B

C

Solution: reset, don’t wrap #s

● Sequence numbers taken from a large, linear
space

● Now repeated updates in any order cannot be
interpreted as new and cause an endless cycle
■ New work requires fresh messages to be injected

by routers

● We use aging to purge an update with
maximum sequence number, should that arise.

Round-
Trip
Time
(RTT)

Sender Receiver

ACK 486

Data 4381:5841

Data 1461:2921Data 2921:4381

Data 5841:7301

ACK 973

ACK 1461

Data 1:1461

TCP Congestion Control

• Rule: grow window by one
 full-sized packet for each
 valid ACK received

• Send M ACKs for one pkt

• Growth factor proportional
 to M (xM in slow-start!)

TCP Daytona Performance
Page fetch from CNN.com

0

10000

20000

30000

40000

50000

60000

0 0.2 0.4 0.6 0.8 1
Time (sec)

S
eq

u
en

ce
 N

u
m

b
er

 (
b

yt
es

)

Modified Client
Normal Client

Solution: Require Proof

● Solution against ack splitting
■ check that entire packet is ack’ed before opening

window

● More generally
■ client can spoof fast recovery by sending large # of

duplicate acks (after halving cwnd, each dupack
increases cwnd by 1)

■ client can ack before actually receiving packet

● Solution: add random bit to packet; receiver
must echo back to sender to prove receipt

BGP Error Handling

● In BGP routing, peers exchange
announcements over a TCP connection and
use them to select forwarding paths

● If bad information is received by a peer, which
of course shouldn’t happen, it resets the
connection and retries.

bad info
�

Reset!

● Some routers pass on bad info rather than reset (yellow)
● Bad info propagates much further than otherwise
● Many “correct” routers see the bad info and reset (orange)

● This caused a widespread outage in October 2001

Problem – errors can be
magnified

Bad

L

L L

L

Solution: weed out individual errors

● Add error checking at a finer granularity
■ Individual routes rather than whole peering sessions

● Correct behavior is then to drop individual errors

● Bad behavior, which passes errors, doesn’t hurt
as much

● BGP spec being revised in NANOG and IETF.

Broader Question

● How do we design protocols so that errors
don’t happen and/or if they do, they don’t
have widespread effect?
■ end to end principle & soft state help with fail-stop

failures, but not with implementation/operator error
■ neither do encryption, more complete specs, …

● Defensive protocol design
■ expect protocol and implementation errors, and

design system to be robust in face of problems

Defensive Protocol Design

● Minimize dependencies
■ clean simple interfaces with as little interdependence as possible

● Verify information
■ add redundancy so that nodes can check information provided

by other nodes

● Protect resources
■ e.g., against DoS attacks

● Contain faults
■ so problems don’t propagate

● Expose errors
■ end to end failure recovery hides problems, reduces likelihood

problems will be fixed

