CSE/EE 461 Lecture 26
Course Wrapup

Tom Anderson
tom@cs.washington.edu

Security Lessons

o Hard to resecure a machine after penetration

how do you know you've removed all the
backdoors?

o Hard to detect if machine has been
penetrated
Western Digital example
o Any system with bugs is vulnerable

and all systems have bugs: fingerd, ping of death,
Code Red, nimda)




Soapbox

 Information = property

is it ok to break into a computer system if
you don’t intend to steal anything -- just to
look around?

Course Topics

¢ Internet architecture

how a web request works, from click to display

— DNS lookup, connection setup, request/response to
server, IP routing, media access, wire signalling, ...

end to end principle

e Link layer
Signal transmission
Checksums and CRC'’s
Media access (Ethernet)




Course Topics

e Routing (IP)

forwarding and addressing mechanics

link state and distance vector routing (OSPF)
interdomain routing (BGP)

server load balancing and NATs

e Transport (TCP)

ARQ and sliding window

Connection setup/teardown and flow control

Remote procedure call

Congestion control: RTT estimation and window size

Course Topics

Services

DNS lookup, caching and replication

distributed cache coherence
Multicast

forwarding, routing, retransmission, congestion control
Real-time

scheduling and buffer management

resource reservations

Security
encryption and why that's not enough




Internet Design Principles

e End to end principle

Expect failures to occur at every step, so end hosts
must be ultimately responsible for error recovery

example: TCP checksum, sliding window

o Soft state
if possible, state should be recoverable after a failure
example: link state routing messages are resent
periodically, whether needed or not

o Design for scalability
using backoff: Ethernet, TCP congestion control
using hierarchy: IP addresses, DNS, routing (BGP)
using neighbors: IGMP, multicast retransmissions

The Future: Reliability

e Internet has ~ 98-99% uptime

measured end to end: can two hosts
communicate?

telephone network: 99.99% uptime
air traffic control: 99.999% uptime
e How do we build more reliable systems?
Internet effective at masking router/link failures
— “fail stop” errors: system crashes and reboots

Not as good at more arbitrary failures

— Operational mistakes, programming errors, malicious
attacks




How robust isthe Internet to fail-stop problems?

Reachability %
(@ World 1571000 (1098) WWw (335
o 3} DNS TLD servers (1] Internet (1267
100
%
963
E¥:
A
92
203
1
= On Sept 11...
86
88
82
3 3
80

Timezone [msdw-2, Mew Yark, NY] Capyright () 2001 MIDS, info@matrisx net hep:f S makee net S
GMT SEP 11 03:00 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300
EDT SEP IDIIFMSEP T134aM 5AM 7AM 9AM 11AM 1PM 3PM 5PM 7PM

What about arbitrary failures?

o Lots of examples where more arbitrary failures
have caused large problems

misconfigured routers at Virginia ISP (AS7007)
advertised zero cost routes to everywhere (April 97)

caused nearby AS’s to send all their traffic to that AS
disrupted connectivity for hours
Another example (RFC 2525, 1999): 18 TCP bugs
known to be lurking out there
e Thesis: Need a new protocol design
methodology to prevent these kinds of problems




ARPANET Link-state Flooding

¢ In link state routing, routers exchange updates
with their neighbors. These are flooded so they
reach everyone. Then they are used to calculate
routes.

0
A
Update A
floods to A B‘\
all nodes Q X_) >

e Sequence numbers are used to order updates.
ARPANET used modulo arithmetic to decide
which update is new.

Problem — an endless flood

e One night the ARPANET stopped working. A
corrupt router had injected messages that led
to an endless sequence of updates ...

AiII!IIic

A<B<C<A<B<C< ...

e This was hard to fix — purge entire network of
bad data




Solution: reset, don’t wrap #s

e Sequence numbers taken from a large, linear
space
o Now repeated updates in any order cannot be
interpreted as new and cause an endless cycle
New work requires fresh messages to be injected
by routers
e We use aging to purge an update with
maximum sequence number, should that arise.

TCP Congestion Control

Sender Receiver
Rou_nd- * Rule: grow window by one
Trlp full-sized packet for each
Time valid ACK received
(RTT)

» Send M ACKs for one pkt

» Growth factor proportional
to M (xM in slow-start!)




TCP Daytona Performance

Page fetch from CNN.com
3

60000 1

50000 A

40000 1

30000 1

20000 A

—+— Modified Client
= Normal Client

Sequence Number (bytes)

10000 A

0 :
0 0.2 0.4 0.6 0.8 1
Time (sec)

Solution: Require Proof

e Solution against ack splitting
check that entire packet is ack’ed before opening
window

o More generally

client can spoof fast recovery by sending large # of
duplicate acks (after halving cwnd, each dupack
increases cwnd by 1)

client can ack before actually receiving packet

o Solution: add random bit to packet; receiver
must echo back to sender to prove receipt




BGP Error Handling

In BGP routing, peers exchange
announcements over a TCP connection and
use them to select forwarding paths

QA bad info> @

If bad information is received by a peer, which
of course shouldn’t happen, it resets the
connection and retries.

Problem — errors can be
magnified

Some routers pass on bad info rather than reset (yellow)

Bad info propagates much further than otherwise

Many “correct” routers see the bad info and reset (orange)

This caused a widespread outage in October 2001




Solution: weed out individual errors

Add error checking at a finer granularity
Individual routes rather than whole peering sessions

Correct behavior is then to drop individual errors

Bad behavior, which passes errors, doesn’t hurt
as much

BGP spec being revised in NANOG and IETF.

Broader Question

How do we design protocols so that errors
don’t happen and/or if they do, they don’t
have widespread effect?

end to end principle & soft state help with fail-stop
failures, but not with implementation/operator error

neither do encryption, more complete specs, ...
Defensive protocol design

expect protocol and implementation errors, and
design system to be robust in face of problems




Defensive Protocol Design

Minimize dependencies
clean simple interfaces with as little interdependence as possible
Verify information

add redundancy so that nodes can check information provided
by other nodes

Protect resources

e.g., against DoS attacks
Contain faults

so problems don't propagate
Expose errors

end to end failure recovery hides problems, reduces likelihood
problems will be fixed




