CSE/EE 461 Lecture 25
Security Practice

Tom Anderson
tom@cs.washington.edu

Security Practice

e In practice, systems are not that secure
hackers can go after weakest link
— any system with bugs is vulnerable
vulnerability often not anticipated
— usually not a brute force attack against encryption system
often can't tell if system is compromised
— hackers can hide their tracks

can be hard to resecure systems after a breakin
— hackers can leave unknown backdoors

Password Attack/Response

e Moore’s Law: enables large number of passwords to
be checked very quickly

¢ Countermeasure

Delay password check for 1 second, so can't try them quickly

Need to delay both successful and unsuccessful password
checks!

o Counter-countermeasure:

Observe network traffic; extract any packet encrypted in
password; check various passwords offline

o Counter-counter-countermeasure:

Kerberos: don’t use password to encrypt packets; instead
use password to encrypt file containing shared key; use
shared key to encrypt packets

o Counter-counter-counter-countermeasure: ...

K erberos Weaknesses

o Early versions of Kerberos had several security
flaws

block cipher: allowed encrypted blocks to be replaced
— A->B (transfer $10 to Tom’s account)
— A -> B (transfer $1M to Wells Fargo)
— solution: add encrypted CRC over entire message

used timestamps to verify communication was recent
— time server communication not encrypted
— get time from authentication server

Kerberos login program downloaded over NFS
— NFS authenticates requests, but data is unencrypted
— disallow diskless operation

802.11 Weaknesses

Ports often installed behind the firewall
anyone can listen, send packets on intranet
Weak encryption method
uses 40 bit key, 32 bit initial #

most implementations use same initial #, allowing
dictionary, replay attacks

Key management
single key used for all senders on a LAN
often disabled

Uses parity instead of CRC for integrity
allows block replacements that maintain parity

Internet Worm

o Used the Internet to infect a large number of
machines in 88

password dictionary

sendmail bug
— default configuration allowed debug access
— well known for several years, but not fixed
fingerd: finger tom@cs
— fingerd allocated fixed size buffer on stack
— copied string into buffer without checking length
— encode virus into string!

¢ Used infected machines to find/infect others

Ping of Death

IP packets can be fragmented, reordered in
flight
Reassembly at host

can get fragments out of order, so host allocates
buffer to hold fragments

Malformed IP fragment possible
offset + length > max packet size
Kernel implementation didn’t check

Was used for denial of service, but could have
been used for virus propagation

TCP/DNS Hijacking

o Example: Mitnick
denial of service attack against system administrator
— open large number of TCP connections
scan for open, idle TCP connections (e.g., rlogin,
xwindows)

— send bogus TCP packets to other end
— e.g., to modify .rhosts to allow mitnick access

o Example: DNS cache poisoning

watch DNS cache for when it fetches new translation
- e.g., for cnn.com

spoof reply to poison cache to point to bogus server

Netscape

o Used time of day to pick session key
easy to predict, break
o Offered replacement browser code for
download over Web

four byte change to executable made it use
attacker’s key

e Buggy helper applications (ex: ghostview)

if web site hosts infected content, can infect clients
that browse to it

M crosoft

e Browser runs Java, supposedly “safe”

random byte code generation found
numerous bugs that caused crashes

many could be used to covertly insert
viruses
o Email viruses: Melissa, etc.

Attachments can run code that is poorly
sandboxed

Code Red/Nimda

o Dictionary attack of known vulnerabilities

known Microsoft web server bugs, email
attachments, browser helper applications, ...

used infected machines to infect new machines
e Code Red:

designed to cause machines surf to whitehouse.gov
simultaneously

o Nimda:
Left open backdoor on infected machines for any use
Infected ~ 400K machines; approx ~30K still infected

Thompson Virus

o Ken Thompson self-replicating program

installed itself silently on every UNIX
machine, including new machines with new
instruction sets
e Aside: can you write a self-replicating C
program?
program that when run, outputs itself
—without reading any input files!
ex: main() { printf(“main () { printf(“main () ...

Add backdoor to login.c

o Step 1: modify login.c
A:
if (name == “ken”) {
don’t check password,
login ken as root;

}
e Modification is too obvious; how do we
hide it?

Hiding the change to login.c

o Step 2: Modify the C compiler
B:

if see trigger {
insert A into the input stream

}
o Add trigger to login.c
/* gobblygook */
« Now we don’t need to include the code for the
backdoor in login.c, just the trigger

But still too obvious; how do we hide the
modification to the C compiler?

Hiding the change to the compiler

o Step 3: Modify the compiler
C:
if see trigger2 {
insert B and C into the input stream

}
o Compile the compiler with C present
now in object code for compiler

e Replace C in the compiler source with trigger2

Compiler compiles the compiler

o Every new version of compiler has code for
B,C included
as long as trigger2 is not removed
and compiled with an infected compiler
if compiler is for a completely new machine: cross-
compiled first on old machine using old compiler
o Every new version of login.c has code for A
included
as long as trigger is not removed
and compiled with an infected compiler

L essons

e Hard to resecure a machine after
penetration

e Hard to detect if machine has been
penetrated

e Any system with bugs is vulnerable

Soapbox

 Information = property

is it ok to break into a computer system if
you don’t intend to steal anything -- just to
look around?

Course Topics

¢ Internet architecture

how a web request works, from click to display

— DNS lookup, connection setup, request/response to
server, IP routing, media access, wire signalling, ...

end to end principle

e Link layer
Signal transmission
Checksums and CRC'’s
Media access (Ethernet)

Course Topics

e Routing (IP)
forwarding and addressing mechanics
link state and distance vector routing (OSPF)
interdomain routing (BGP)
server load balancing and NATs
e Transport (TCP)
ARQ and sliding window

Connection setup/teardown and flow control
Remote procedure call

Congestion control: RTT estimation and window size

Course Topics

Services
DNS lookup, caching and replication
distributed cache coherence
Multicast
forwarding, routing, retransmission, congestion control
Real-time
scheduling and buffer management
resource reservations
Security
encryption and why that's not enough

Internet Design Principles

e End to end principle

Expect failures to occur at every step, so end hosts
must be ultimately responsible for error recovery

example: TCP checksum, sliding window
o Soft state
if possible, state should be recoverable after a failure

example: link state routing messages are resent
periodically, whether needed or not

o Design for scalability
using backoff: Ethernet, TCP congestion control
using hierarchy: IP addresses, DNS, routing (BGP)
using neighbors: IGMP, multicast retransmissions

The Future: Reliability

e Internet has ~ 98-99% uptime

measured end to end: can two hosts
communicate?

telephone network: 99.99% uptime
air traffic control: 99.999% uptime

e How do we build more reliable systems?

Internet effective at masking router/link failures

Remaining failures are operational mistakes,
programming errors, malicious attacks

Need more robust protocol design methodology!

