
CSE/EE 461 Lecture 25
Security Practice

Tom Anderson
tom@cs.washington.edu

Security Practice

● In practice, systems are not that secure
■ hackers can go after weakest link

– any system with bugs is vulnerable

■ vulnerability often not anticipated
– usually not a brute force attack against encryption system

■ often can’t tell if system is compromised
– hackers can hide their tracks

■ can be hard to resecure systems after a breakin
– hackers can leave unknown backdoors



Password Attack/Response

● Moore’s Law: enables large number of passwords to
be checked very quickly

● Countermeasure
■ Delay password check for 1 second, so can’t try them quickly
■ Need to delay both successful and unsuccessful password

checks!

● Counter-countermeasure:
■ Observe network traffic; extract any packet encrypted in

password; check various passwords offline

● Counter-counter-countermeasure:
■ Kerberos: don’t use password to encrypt packets; instead

use password to encrypt file containing shared key; use
shared key to encrypt packets

● Counter-counter-counter-countermeasure: …

Kerberos Weaknesses

● Early versions of Kerberos had several security
flaws
■ block cipher: allowed encrypted blocks to be replaced

– A -> B  (transfer $10 to Tom’s account)
– A -> B (transfer $1M to Wells Fargo)
– solution: add encrypted CRC over entire message

■ used timestamps to verify communication was recent
– time server communication not encrypted
– get time from authentication server

■ Kerberos login program downloaded over NFS
– NFS authenticates requests, but data is unencrypted
– disallow diskless operation



802.11 Weaknesses

● Ports often installed behind the firewall
■ anyone can listen, send packets on intranet

● Weak encryption method
■ uses 40 bit key, 32 bit initial #
■ most implementations use same initial #, allowing

dictionary, replay attacks

● Key management
■ single key used for all senders on a LAN
■ often disabled

● Uses parity instead of CRC for integrity
■ allows block replacements that maintain parity

Internet Worm

● Used the Internet to infect a large number of
machines in 88
■ password dictionary
■ sendmail bug

– default configuration allowed debug access
– well known for several years, but not fixed

■ fingerd: finger tom@cs
– fingerd allocated fixed size buffer on stack
– copied string into buffer without checking length
– encode virus into string!

● Used infected machines to find/infect others



Ping of Death

● IP packets can be fragmented, reordered in
flight

● Reassembly at host
■ can get fragments out of order, so host allocates

buffer to hold fragments

● Malformed IP fragment possible
■ offset + length > max packet size
■ Kernel implementation didn’t check

● Was used for denial of service, but could have
been used for virus propagation

TCP/DNS Hijacking

● Example: Mitnick
■ denial of service attack against system administrator

– open large number of TCP connections

■ scan for open, idle TCP connections (e.g., rlogin,
xwindows)

– send bogus TCP packets to other end
– e.g., to modify .rhosts to allow mitnick access

● Example: DNS cache poisoning
■ watch DNS cache for when it fetches new translation

– e.g., for cnn.com

■ spoof reply to poison cache to point to bogus server



Netscape

● Used time of day to pick session key
■ easy to predict, break

● Offered replacement browser code for
download over Web
■ four byte change to executable made it use

attacker’s key

● Buggy helper applications (ex: ghostview)
■ if web site hosts infected content, can infect clients

that browse to it

Microsoft

● Browser runs Java, supposedly “safe”
■ random byte code generation found

numerous bugs that caused crashes

■ many could be used to covertly insert
viruses

● Email viruses: Melissa, etc.
■ Attachments can run code that is poorly

sandboxed



Code Red/Nimda

● Dictionary attack of known vulnerabilities
■ known Microsoft web server bugs, email

attachments, browser helper applications, …
■ used infected machines to infect new machines

● Code Red:
■ designed to cause machines surf to whitehouse.gov

simultaneously

● Nimda:
■ Left open backdoor on infected machines for any use
■ Infected ~ 400K machines; approx ~30K still infected

Thompson Virus

● Ken Thompson self-replicating program
■ installed itself silently on every UNIX

machine, including new machines with new
instruction sets

● Aside: can you write a self-replicating C
program?
■ program that when run, outputs itself

– without reading any input files!

■ ex: main() { printf(“main () { printf(“main () …



Add backdoor to login.c

● Step 1: modify login.c
A:

if (name == “ken”) {
    don’t check password;
    login ken as root;
}

● Modification is too obvious; how do we
hide it?

Hiding the change to login.c

● Step 2: Modify the C compiler
B:

if see trigger {
    insert A into the input stream
}

● Add trigger to login.c
/* gobblygook */

● Now we don’t need to include the code for the
backdoor in login.c, just the trigger
■ But still too obvious; how do we hide the

modification to the C compiler?



Hiding the change to the compiler

● Step 3: Modify the compiler
C:

if see trigger2 {
    insert B and C into the input stream
}

● Compile the compiler with C present
■ now in object code for compiler

● Replace C in the compiler source with trigger2

Compiler compiles the compiler

● Every new version of compiler has code for
B,C included
■ as long as trigger2 is not removed
■ and compiled with an infected compiler
■ if compiler is for a completely new machine: cross-

compiled first on old machine using old compiler

● Every new version of login.c has code for A
included
■ as long as trigger is not removed
■ and compiled with an infected compiler



Lessons

● Hard to resecure a machine after
penetration

● Hard to detect if machine has been
penetrated

● Any system with bugs is vulnerable

Soapbox

● Information = property
■ is it ok to break into a computer system if

you don’t intend to steal anything -- just to
look around?



Course Topics

● Internet architecture
■ how a web request works, from click to display

– DNS lookup, connection setup, request/response to
server, IP routing, media access, wire signalling, …

■ end to end principle

● Link layer
■ Signal transmission
■ Checksums and CRC’s
■ Media access (Ethernet)

Course Topics

● Routing (IP)
■ forwarding and addressing mechanics
■ link state and distance vector routing (OSPF)
■ interdomain routing (BGP)
■ server load balancing and NATs

● Transport (TCP)
■ ARQ and sliding window
■ Connection setup/teardown and flow control
■ Remote procedure call
■ Congestion control: RTT estimation and window size



Course Topics

● Services
■ DNS lookup, caching and replication
■ distributed cache coherence

● Multicast
■ forwarding, routing, retransmission, congestion control

● Real-time
■ scheduling and buffer management
■ resource reservations

● Security
■ encryption and why that’s not enough

Internet Design Principles

● End to end principle
■ Expect failures to occur at every step, so end hosts

must be ultimately responsible for error recovery
■ example: TCP checksum, sliding window

● Soft state
■ if possible, state should be recoverable after a failure
■ example: link state routing messages are resent

periodically, whether needed or not

● Design for scalability
■ using backoff: Ethernet, TCP congestion control
■ using hierarchy: IP addresses, DNS, routing (BGP)
■ using neighbors: IGMP, multicast retransmissions



The Future: Reliability

● Internet has ~ 98-99% uptime
■ measured end to end: can two hosts

communicate?
■ telephone network: 99.99% uptime
■ air traffic control: 99.999% uptime

● How do we build more reliable systems?
■ Internet effective at masking router/link failures
■ Remaining failures are operational mistakes,

programming errors, malicious attacks
■ Need more robust protocol design methodology!


