CSE/EE 461 Lecture 24
Security Theory and Practice

Tom Anderson
tom@cs.washington.edu
Peterson, Chapter 8

Secret Key, Public Key

o Encrypt messages for secrecy, authentication,
message integrity
e Secret Key encryption

Single key (symmetric) is shared between parties,
kept secret from everyone else
— Ciphertext = (M)*K; Plaintext = M = (M*K)"K

o Public Key encryption

Keys come in pairs, public and private
— Ciphertext = (M)*K-public; M = ((M)*K-public)*K-private
— Ciphertext = (M)*K-private; M = ((M)"K-private)"K-public
Get both authentication and secrecy, by encrypting
in private key of sender, public key of receiver




Public Key -> Session Key

o Public key encryption/decryption is slow; so can use
public key to establish (shared) session key
assume both sides know each other’s public key

client .
client 1D, x server

. ((Ky,x+1)A"Cpublic)~S-priv
client

aut henti cat es

server y+1) ~K
server

aut henti cat es
client

Public Key Distribution

e How do we know public key of other side?
infeasible for every host to know everyone’s key
need public key infrastructure (PKI)

o Certificates (X.509)

Distribute keys by trusted certificate authority (CA)
—“l swear X’s public key is Y”, signed by CA (their private key)
Example CA’s: Verisign, Microsoft, UW CS Dept,, ...

o How do we know public key of CA?

Can build chains of trust, e.g., given public key of UW
CS’s CA, who can sign for Verisign’s public key, who
can sign for xyz's public key




Public Key Revocation

o What if a private key is compromised?
need certificate revocation list (CRL)

—and a CRL authority for serving the list
everyone using a certificate is responsible
for checking to see if it is on CRL
ex: certificate can have two timestamps

—one long term, when certificate times out

—one short term, when CRL must be checked

— CRL is online, CA can be offline

Shared Key -> Session Key

e In shared key systems, how do we gain
a shared key with other side?
infeasible for everyone to share a secret
with everyone else

solution: “authentication server” (Kerberos)
—everyone shares (a separate) secret with server
—server provides shared session key for A <-> B

everyone trusts authentication server
—if compromise server, can do anything!




Kerberos Example

(A<->B, Kab)”"Ksb

Kerberos Detalls

o Any key can be broken if given a long enough
time

Use timestamps to ensure that keys were created
recently

o Need to ensure attacker doesn’'t change
messages in flight
ex: replace parts of message
use encrypted checksum on entire message
o Passwords are often easily broken
Derive Ksa from A’s password
Use Ksa to establish temporary key, Ksa-temp




Message Digests (MD5, SHA)

o Cryptographic checksum: message integrity

Typically small compared to message (MD5 128 bits)

“One-way”: infeasible to find two messages with
same digest

Initial digest | Message (padded) J
512 bits | 512 bits | | 512 bits |

Transform

Transform

Message digest

Example Systems

Cryptography can be applied at multiple layers

Pretty Good Privacy (PGP)
For authentic and confidential email

Secure Sockets (SSL) and Secure HTTP (HTTPS)
For secure Web transactions

IP Security (IPSEC)
Framework for encrypting/authenticating IP packets




PGP

Application level system

Based on public keys and a “grass roots” Web

of trust

Sign messages for integrity/authenticity
Encrypt with private key of sender

Encrypt messages for privacy
Could just use public key of receiver ...

But encrypt message with secret key, and secret
key with public key of receiver to boost
performance

SSL/TLSand HTTPS

Secure transport layer targeted at Web transactions
SSL/TLS inserted between TCP and HTTP to make secure HTTP
Extra handshake phase to authenticate and exchange
shared session keys
Client might authenticate Web server but not vice-versa
— Certificate Authority embedded in Web browser
Performance optimization
Refer to shared state with session id
Can use same parameters across connections
— Client sends session id, allowing server to skip handshake




|IPSEC

Framework for encrypted IP packets
Choice of algorithms not specified

Uses new protocol headers inside IPv4 packets

Authentication header
— For message integrity and origin authenticity
— Optionally “anti-replay” protection (via sequence number)

Encapsulating Security Payload
— Adds encryption for privacy

Depends on key distribution (ISAKAMP)
Sets up security associations

Ex: secure tunnels between corporate offices

Filter-based Firewalls

Rest of the Internet Firewall

o Sit between site and rest of Internet, filter packets
Enforce site policy in a manageable way
e.g. pass (*,* 128.7.6.5, 80 ), then drop (*, *, *, 80)

Rules may be added dynamically to pass new
connections

o Sometimes bundled with a router: “level 4” switch
Acts like a router (accepts and forwards packets)
Looks at information up to TCP port numbers (layer 4)




Proxy-Based Firewalls

Company net

o Problem: Filter ruleset can be complex/insufficient
Adequate filtering may require application knowledge
Example: email virus signature

e Run proxies for Web, mail, etc. just outside firewall
External requests go to proxies, only proxies connect
inside

— External user may or may not know this is happening
Proxies filter based on application semantics

Security Practice

e In practice, systems are not that secure
hackers can go after weakest link
— any system with bugs is vulnerable
vulnerability often not anticipated
— usually not a brute force attack against encryption system
often can't tell if system is compromised
— hackers can hide their tracks
can be hard to resecure systems after a breakin
— hackers can leave unknown backdoors




Two Old Examples

e Secure computer deep in Pentagon

Tiger team asked to see if they could break in
— given all specs, source code, etc.
— no physical access

Hacked into the system in < a week
e Secure communications channel: one time pad

paper tape of random #’s; same tape used at sender,
receiver

system XOR random # to each bit before xmit
operational practice made system very insecure

Password Dictionary Attacks

e Moore’s Law: brute force attacks become
cheaper over time

o UNIX passwords: time to check all 5 letter
passwords (lower case): 26”5 ~ 10M
in 75, 1 day
in 92, 10 seconds
in 02, 0.01 seconds
o Extend password to six letters, require upper,
lower, number, control char: 70"6 ~ 600B
in 92, 6 days
in 02, with 100 PC’s in parallel, < 1 minute (!)




Trojan Horse

o Can you trust your login prompt?
did the person before you really log out? how do you
know?

o Can you trust your web browser?

what if someone modified the installed version to
capture your password?

did you download the browser over the web? how do
you know it didn’t get modified in flight?
o Can you trust your email?

how do you know the sender sent the mail? that it
wasn’t modified?

K erberos Weaknesses

o Early versions of Kerberos had several security
flaws

block cipher: allowed encrypted blocks to be replaced
— A->B (transfer $10 to Tom’s account)
— A -> B (transfer $1M to Wells Fargo)
— solution: add encrypted CRC over entire message

used timestamps to verify communication was recent
— time server communication not encrypted
— get time from authentication server

Kerberos login program downloaded over NFS
— NFS authenticates requests, but data is unencrypted
— disallow diskless operation




802.11 Weaknesses

Ports often installed behind the firewall
anyone can listen, send packets on intranet
Weak encryption method
uses 40 bit key, 32 bit initial #

most implementations use same initial #, allowing
dictionary, replay attacks

Key management overhead

single key used for all senders on a LAN; often disabled

Uses parity instead of CRC for integrity
allows block replacements that maintain parity

Internet Worm

o Used the Internet to infect a large number of
machines in 88

password dictionary

sendmail bug
— default configuration allowed debug access
— well known for several years, but not fixed
fingerd: finger tom@cs
— fingerd allocated fixed size buffer on stack
— copied string into buffer without checking length
— encode virus into string!

¢ Used infected machines to find/infect others




Ping of Death

IP packets can be fragmented, reordered in
flight
Reassembly at host

can get fragments out of order, so host allocates
buffer to hold fragments

Malformed IP fragment possible
offset + length > max packet size
Kernel implementation didn’t check

Was used for denial of service, but could have
been used for virus propagation

TCP/DNS Hijacking

o Example: Mitnick
denial of service attack against system administrator
— open large number of TCP connections
scan for open, idle TCP connections (e.g., rlogin,
xwindows)

— send bogus TCP packets to other end, e.g., to modify .rhosts
to allow mitnick access

o Example: DNS cache poisoning

watch DNS cache for when it fetches new translation
- e.g., for cnn.com

spoof reply to poison cache to point to bogus server




Netscape

o Used time of day to pick session key
easy to predict, break
o Offered replacement browser code for
download over Web

four byte change to executable made it use
attacker’s key

e Buggy helper applications (ex: ghostview)

if web site hosts infected content, can infect clients
that browse to it

M crosoft

e Browser runs Java, supposedly “safe”

random byte code generation found
numerous bugs that caused crashes

many could be used to covertly insert
viruses
o Email viruses: Melissa, etc.

Attachments can run code that is poorly
sandboxed




Code Red/Nimda

o Dictionary attack of known vulnerabilities

email attachments, Microsoft web server bugs,
browser helper applications, ...

used infected machines to infect new machines

e Code Red:

designed to cause all machines to access
whitehouse.gov simultaneously

o Nimda:
Left open backdoor on infected machines for any use

Sysadmins could monitor virus propagation to
located infected machines

Infected ~ 400K machines; approx ~30K still infected




