
CSE/EE 461 Lecture 20
More Multicast

Tom Anderson
tom@cs.washington.edu

Peterson, Chapter 4.4

Reverse Path Multicast (RPM)

● Use distance vector to set up a broadcast tree
● Prune off branches of the tree where there are no

receivers
● “Broadcast and prune”

■ Use IGMP to tell if LAN if no members
■ If no children are members, propagate prune to parent

in tree

● Assume membership and prune if wrong vs.
assume non-membership and explicit join



Phase 1: Truncated Broadcast

g

s

g g

Phase 2: Pruning

g

s

g g

prune(s,g)

prune(s,g)



Phase 3: Grafting

g

s

g g

graft(s,g)

graft(s,g)

g

report g

Phase 4: Steady State

g

s

g g

g



Hierarchical Broadcast and Prune

● Reverse Path Flooding
■ Discard incoming packet if not from reverse path
■ Multicast incoming packet to all borders

● Reverse Path Multicast
■ For each neighbor AS, compute if we’re on its

reverse path to source
■ Multicast incoming packets to all border routers for

those AS’s
■ Propagate prunes across the AS back towards the

source

Scope Control Motivation

● Efficiency with reverse path multicast
■ sender prunes receivers

● Administrative control over listeners
■ anyone can listen to multicast conversation!
■ snooping more difficult in unicast

● Coordinate sub-group actions
■ elect a leader/suppress duplicate actions
■ locate nearest receiver



Scope Control Mechanism #1

● Administrative TTL boundaries
■ Sender uses TTL = max local diameter

■ At border router, forward pkts out iff > TTLmax

Internet

s

TTL thresh = 8

Scope Control Mechanism #2

● Allocate block of “local” addresses
■ At border router, forward only global addresses

Internet

s

Don’t forward addresses
0xffff0000-0xffff2000



Expanding Ring Multicast

● Locate “nearest” receiver by sending to
more and more of group

s

g

g g
g

g
TTL=1TTL=3

TTL=5

TTL=2

g

g

Reliable Multicast

● How do we make sure each receiver
gets a copy of each message?

R

R

R

Sender

R

R



Ack Implosion

● If each receiver acks each packet,
sender gets overwhelmed!

R

R

R

Sender

R

R

Negative Acks

● Possible solution: only send back to
source if missing data
■ missing sequence number (2, 3, 5, 6, 7, …)

■ ping if no data being sent, to detect if
missing last packet

● Fewer packets if losses are infrequent
■ note TCP uses acks for pacing new sends



Nack Implosion

● If lose packet near sender, overwhelm
sender with nacks!

R

R

R

Sender

R

R

X

Hop by Hop Retransmission

● Router keeps copy of all packets
● Resends if negative ack or timeout

R

R

R

Sender

R

R
X
retransmission



Scalable Reliable Multicast

● Use multicast services to (scalably!) recover
from packet losses!
■ If missing packet, multicast NACK

– anyone get the packet?

■ Receivers with packet will multicast reply
– anyone else missing the packet?

■ Doesn’t matter who NACKs and who replies
– anyone missing the packet can get the reply

● Assumes packets are signed by source
■ otherwise, any receiver in group could supply

bogus packets that appear to come from sender

SRM Scalability?

● If everyone multicasts NACK
■ NACK implosion everywhere!

● If everyone multicasts reply
■ data implosion everywhere!

● Goal: minimize simultaneous NACKs
and replies
■ want one node to quickly NACK, reply
■ others to stay silent



SRM Scalability

● Use random delay before sending NACK/reply
■ want at least one node to send (short delay)
■ want at most one node to send (long delay)

● Bias delay to reduce competition
■ NACK delay based on distance to source
■ Reply delay based on distance to NACK
■ distance estimated using periodic session messages

SRM Example

● R3 detects loss, multicasts NACK
● R1 sees NACK, multicasts reply

R5

R2

R4

Sender

R3

R1
X



SRM Timer Adaptation

● Want system to be robust to topologies,
group sizes, congestion
■ Adapt average delays to minimize

redundant NACKs, replies
■ Analogous to RTT estimation in TCP

● Examples
■ if too many NACKs, increase average delay
■ if NACK once, reduce delay so NACK again

What if multiple drops?

● Can use TTL expanding ring search for
local recovery

R

R

R

Sender

R

R R

R
X

X X



Multicast Packet Ordering

● Easy to order unicast packets => seq #s
● Easy to order multicast packets from a

single source => seq #s
● What if multiple sources?

■ Packets can arrive in different order at
different receivers

■ Is this bad?
■ If so, what can we do to fix it?

Multicast Ordering Example

s

s

g g

g

g

abc

xyzaxbycz

abxcyz

abcxyz

xyzabc

g

g

xaybzc



Example: Email Groups

A CB D
Meet for lunch?

Noon for what?

Meet at noon?

Confirmed!

Need to hold 
design review

Confirmed!

Oh, ok!

Anytime other 
than noon!


