
CSE/EE 461 Lecture 18
Naming and Multicast

Tom Anderson
tom@cs.washington.edu

Peterson, Chapter 9.1, 4.4

DNS Availability

● What happens if DNS service is not working?

● DNS servers are replicated
■ name service available if at least one replica is

working
■ queries load balanced between replicas

Root
name
server

cicada.cs
.princeton.edu

princeton.edu, 128.196.128.233

2

3

Root
name
server

Root
name
server



Replica Consistency

● How do we keep multiple copies of a
database consistent?

● Apply same sequence of updates to each
copy, in the same order
■ Example: send updates to master; master copies

exact sequence of updates to each replica

Master

Replica

x” x’ z y x

Replica

x” x’ z y x

Replica Consistency

● While updates are propagating, which version(s) are
visible?

● DNS solution: eventual consistency
■ changes made to a master server; copied in the background

to other replicas
■ in meantime can get inconsistent results, depending on which

replica you consult

● Alternative: strict consistency
■ before making a change, notify all replicas to stop serving the

data temporarily (and invalidate any copies)
■ broadcast new version to each replica
■ when everyone is updated, allow servers to resume



Eventual Consistency Example

Server
replicas

clients

t+5:x’

x’

t
+2
: 
x

t
+1
: 
g
et
 x

t:x
’

t
+
4
:
x
’

t
+
3
:
g
e
t
 
x

Sequential Consistency Example

Server
replicas

clients

t+1:x’

x’

t
+2
:x
’ t:x

’

t
+
2
:
a
c
k

t
+
1
:
x
’

t+
3:
ac
k t+5

:ack

t+4:ack

Write doesn’t complete until all 
copies invalidated or updated



Building on the DNS

● Email: tom@cs.washington.edu
■ DNS record for tom in the domain cs.washington.edu,

specifying where to deliver the email

● Uniform Resource Locators (URLs) name for
Web pages
■ e.g., www.cs.washington.edu/homes/tom
■ Use domain name to identify a Web server
■ Use “/” separated string for file name on the server (or

program to run to generate the page)

Future Evolution of the DNS

● Design constrains us in two major ways that
are increasingly less appropriate

● Static host to IP mapping
■ What about mobility (Mobile IP) and dynamic

address assignment (DHCP)?

● Location-insensitive queries
■ Many servers are geographically replicated;

“yahoo.com” doesn’t refer to a single machine or
even a single location (want closest server)



Akamai

● Use DNS to select a nearby Web cache
■ Front page points to g.akamai.tech
■ Special DNS server for akamai.tech, points to local

akamai DNS server
– return different server based on client location
– use long TTL assuming clients don’t move

■ Local DNS server points to local web server
– use short TTL to allow rapid load balancing

■ Local server returns data

● Names no longer mean same thing everywhere

Akamai Example

Nearby
Server

Local DNS server
for g.akamai.tech

1

2

3

4
56

cnn.com
front page

g.akamai.tech
DNS server

for akamai.tech

embedded
object



Peer-to-Peer File Sharing

● Want to share files among large number of
users; each serves subset of files
■ need to locate which servers have which files
■ would DNS be a good solution for this?

● Example: napster
■ centralized directory of all servers offering each file
■ users register files, make requests to napster central
■ napster returns list of servers hosting requested file
■ client directly connects to server to get file

Peer-to-Peer File Sharing (2)

● Can we locate files without a centralized directory?
■ for legal and privacy reasons

● Gnutella
■ organize servers into ad hoc graph
■ flood query to all servers, in breadth first search

– use hop count to control depth

■ if found, server replies back through path of servers
■ client makes direct connection to server to get file

● Freenet
■ same as gnutella, except depth first search, data goes

back along request path, and servers in path cache files



Peer-to-Peer File Sharing (3)

● Can we locate files without an exhaustive
search?
■ want to scale to thousands of servers

● Chord/CAN
■ organize servers into a predefined topology

(e.g., k-dimensional hypercube or 2-D set of
rings)

■ hash file names into search path

Multicast

● Challenge: how do we efficiently send
messages to a group of machines?
■ Need to revisit all aspects of networking

– Routing
– Autonomous systems
– Address allocation
– Congestion control
– Reliable delivery
– Ordered delivery



Multicast Motivation

● Send data to multiple receivers at once
■ broadcasting, narrowcasting
■ telecollaboration
■ software update
■ group coordination, subcasting

● Send question to unknown receiver
■ resource discovery
■ distributed database
■ anonymous directory services

Multicast Efficiency

● Send data only once down link shared
by multiple receivers

R

RR

R

Sender



Multicast Deployment

● How do we add multicast services to the
Internet?

● IP multicast
■ special IP addresses to represent groups of receivers
■ receivers subscribe to specific channels
■ modify routers to support multicast sends

● Overlay network
■ PC routers, forward multicast traffic by tunneling over

Internet
■ Works on existing Internet, with no router modifications

IP Multicast Service Model

● Provided by internetwork, with help from LAN
● Best effort delivery (unreliable, unordered, …)

■ Packets addressed to group address (allocated
from special range)

● Receivers
■ zero, one or many receivers
■ dynamic -- anyone can join, leave

● Senders
■ Any number of senders -- just send packet to

group address



Internet Multicast Routing

● How do we distribute packets across
thousands of LANs?
■ Each router responsible for its attached LAN

● Reduces to:
■ How do we forward packets to all interested

routers? (DVMRP, M-OSPF, MBone)

■ How do hosts declare interest to their
routers? (IGMP)

Why not Simple Flooding?

● If haven’t seen a packet before
■ forward it on every link but incoming

■ requires routers to remember each pkt!

R

R

R

Sender



Multicast via Spanning Tree

● Send copies along the spanning tree
■ Ensures every host gets a copy

■ Prune tree if no receivers along a branch

Distance Vector Multicast

● Intuition: unicast routing tables form
inverse tree from senders to destination
■ why not use backwards for multicast?

■ Various refinements to eliminate useless
transfers

● Implemented in DVMRP (Distance
Vector Multicast Routing Protocol)



Reverse Path Flooding (RPF)

● Router forwards packet from S iff packet
came via shortest path back to S

R

R

R

S

s

s

Redundant Sends

● RPF will forward packet to router, even if
it will discard
■ each router gets pkt on all of its input links!

● Each router connected to LAN will
broadcast packet

Ethernet



Reverse Path Broadcast (RPB)

● With distance vector, neighbors
exchange routing tables

● Only send to neighbor if on its shortest
path back to source

● Only send on LAN if have shortest path
back to source
■ break ties arbitrarily

Truncated RPB

● End hosts tell routers if interested
● Routers forward on LAN iff there are

receivers
● Challenges:

■ robust to router/host failures

■ avoid overloading LAN with announcements


