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Names and Addresses

● Names are identifiers for objects/services (high level)
● Addresses are locators for objects/services (low level)
● Resolution is the process of mapping name to address
● But addresses are really lower-level names

■ e.g., NAT translation from a virtual IP address to physical IP
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Naming in Systems

● Ubiquitous
■ Files in filesystem, processes in OS, pages on the

web, …

● Decouple identifier for object/service from
location
■ Hostnames provide a level of indirection for IP

addresses

● Naming greatly impacts system capabilities
and performance
■ Ethernet addresses are a flat 48 bits

– flat 
�

 any address anywhere but large forwarding tables

■ IP addresses are hierarchical 32/128 bits
– hierarchy 

�
 smaller routing tables but constrained

Internet Hostnames

● Hostnames are human-readable identifiers for
end-systems based on an administrative
hierarchy
■ decouple identifier for object/service from its location
■ ex: june.cs.washington.edu, yahoo.com

● IP addresses are a fixed-length binary encoding
for end-systems based on their position in the
network
■ 128.95.2.106 is june’s IP address
■ 216.115.109.6 is one of yahoo.com’s IP addresses



Original Hostname System

● When the Internet was really young …
● Flat namespace

■ Simple (host, address) pairs

● Centralized management
■ Updates via a single master file called HOSTS.TXT
■ Manually coordinated by the Network Information

Center (NIC)

● Resolution process
■ Look up hostname in the HOSTS.TXT file

Scaling Problems

● Coordination
■ Between all users to avoid conflicts

● Inconsistencies
■ Between updated and old versions of file

● Reliability
■ Single point of failure

● Performance
■ Competition for centralized resources



Domain Name System (DNS)

● Developed by Mockapetris and Dunlap, mid-80’s
● Namespace is hierarchical

■ Allows much better scaling of data structures
■ e.g., june.cs.washington.edu

● Namespace is distributed
■ Decentralized administration and access
■ e.g., june managed by CSE

● Resolution is by query/response
■ With replicated servers for redundancy
■ With heavy use of caching for performance

DNS Hierarchy
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• “dot” is the root of the hierarchy
• Top levels now controlled by ICANN
• Lower level control is delegated
• Usage governed by conventions
• FQDN = Fully Qualified Domain Name



Name Space Delegation

● Each organization controls its own name space
(“zone” = subtree of global tree)
■ each organization has its own name servers

– replicated for availability

■ name servers translate only names within their
organization

– client lookup proceeds step-by-step

■ example: washington.edu
– contains IP addresses for all its hosts (www.washington.edu)
– contains pointer to its subdomains (cs.washington.edu)

DNS Lookups/Resolution

● DNS queries/responses
carried on UDP port 53
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Hierarchy of Nameservers
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DNS Bootstrapping

● Need to know IP addresses of root
servers before we can make any queries

● Addresses for 13 root servers ([a-
m].root-servers.net) handled via initial
configuration (named.ca file)



DNS Performance: Caching

● DNS query results are cached at local proxy
■ quick response for repeated translations
■ lookups are the rare case
■ vastly reduces load at the servers
■ what if something new lands on slashdot?
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DNS Cache Consistency

● How do we keep cached copies up to date?
■ DNS entries are modified from time to time

– to change name -> IP address mappings
– to add/delete names

● Cache entries invalidated periodically
■ each DNS entry has time-to-live (TTL) field: how

long can the local proxy can keep a copy?
■ if entry accessed after the timeout, get a fresh copy

from the server
■ how do you pick the TTL?
■ how long after a change are all the copies updated?

Cache Consistency Alternatives

● Caches used in DNS, web proxies, reverse
web proxies, network file systems, …
■ How do you keep cached copy up to date?

● Alternatives:
■ User-driven (HTTP)

– user hits “reload” to fetch latest version

■ Timeouts (DNS, HTTP 1.0, NFS)
– client fetches periodically; in meantime can be out of date

■ “If modified-sense” with timeouts (HTTP 1.1)
– client periodically queries server; download if changed



Callback Cache Consistency

● Can we achieve strict consistency?
■ same as if server was accessed each time

● Callback-based caching
■ server keeps track of everyone who has a copy
■ before applying an update

– send message to each copy to invalidate it
– clients then refetch new version next time it is

needed

■ what about scalability?

Availability

● What happens if DNS service is not working?

● DNS servers are replicated
■ name service available if at least one replica is

working
■ queries load balanced between replicas
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Replica Consistency

● Need to keep database consistent across all replicas
as well as all caches

● DNS solution: eventual consistency
■ changes made to a master server
■ copied in the background to other replicas
■ in meantime can get inconsistent results, depending on which

replica you consult

● Alternative: strict consistency
■ before making a change, notify all replicas to stop serving the

data temporarily (and invalidate any copies)
■ broadcast new version to each replica
■ when everyone is updated, allow servers to resume

Eventual Consistency Example
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Sequential Consistency Example
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Building on the DNS

● Email: tom@cs.washington.edu
■ DNS record for tom in the domain cs.washington.edu,

specifying where to deliver the email

● Uniform Resource Locators (URLs) name for
Web pages
■ e.g., www.cs.washington.edu/homes/tom
■ Use domain name to identify a Web server
■ Use “/” separated string for file name on the server (or

program to run to generate the page)



Future Evolution of the DNS

● Design constrains us in two major ways that
are increasingly less appropriate

● Static host to IP mapping
■ What about mobility (Mobile IP) and dynamic

address assignment (DHCP)?

● Location-insensitive queries
■ Many servers are geographically replicated;

“yahoo.com” doesn’t refer to a single machine or
even a single location (want closest server)

Akamai

● Use the DNS to effect selection of a nearby
Web cache

● Names no longer mean same thing everywhere
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