CSE/EE 461 Lecture 17
Domain Name System

Tom Anderson
tom@cs.washington.edu
Peterson, Chapter 9.1

Names and Addresses

33¢

name ————» Tom Anderson

] CSE Dept.
address University of Washington

Names are identifiers for objects/services (high level)
Addresses are locators for objects/services (low level)
Resolution is the process of mapping name to address

But addresses are really lower-level names
e.g., NAT translation from a virtual IP address to physical IP




Naming in Systems

o Ubiquitous
Files in filesystem, processes in OS, pages on the
web, ...
e Decouple identifier for object/service from
location
Hostnames provide a level of indirection for IP
addresses
o Naming greatly impacts system capabilities
and performance

Ethernet addresses are a flat 48 bits
— flat > any address anywhere but large forwarding tables
IP addresses are hierarchical 32/128 bits

|nternet Hosthames

o Hostnames are human-readable identifiers for
end-systems based on an administrative
hierarchy

decouple identifier for object/service from its location
ex: june.cs.washington.edu, yahoo.com

o |IP addresses are a fixed-length binary encoding
for end-systems based on their position in the
network

128.95.2.106 is june’s IP address
216.115.109.6 is one of yahoo.com'’s IP addresses




Original Hosthame System

When the Internet was really young ...
Flat namespace

Simple (host, address) pairs
Centralized management

Updates via a single master file called HOSTS.TXT

Manually coordinated by the Network Information
Center (NIC)

Resolution process
Look up hostname in the HOSTS.TXT file

Scaling Problems

Coordination

Between all users to avoid conflicts
Inconsistencies

Between updated and old versions of file
Reliability

Single point of failure
Performance

Competition for centralized resources




Domain Name System (DNYS)

Developed by Mockapetris and Dunlap, mid-80’s
Namespace is hierarchical
Allows much better scaling of data structures
e.g., jJune.cs.washington.edu
Namespace is distributed
Decentralized administration and access
e.g., jJune managed by CSE
Resolution is by query/response
With replicated servers for redundancy
With heavy use of caching for performance

DNS Hierarchy

« “dot” is the root of the hierarchy

» Top levels now controlled by ICANN
 Lower level control is delegated

» Usage governed by conventions

* FQDN = Fully Qualified Domain Name




o Each organization controls its own name space

Name Space Delegation

(“zone” = subtree of global tree)

each organization has its own name servers
— replicated for availability
name servers translate only names within their
organization
— client lookup proceeds step-by-step

example: washington.edu

— contains IP addresses for all its hosts (www.washington.edu)
— contains pointer to its subdomains (cs.washington.edu)

o DNS queries/responses
carried on UDP port 53

DNS L ookups/Resolution

cicada.cs.princeton.edu

Root
name
server

Client )

192.12.69.60

Local
name
server

cicada.cs.princeton.edu

cs.princeton.edu, 192.12.69.5

Princeton
name
server

Cs
name
server




Hierarchy of Nameservers

Root
name server

DN

Princeton L Cisco
name server name server
CS . EE
name server name server

o Need to know IP addresses of root
servers before we can make any queries

o Addresses for 13 root servers ([a-
m].root-servers.net) handled via initial
configuration (named.ca file)




DNS Performance: Caching

o DNS query results are cached at local proxy
guick response for repeated translations
lookups are the rare case
vastly reduces load at the servers
what if something new lands on slashdot?

cicada.cs.princeton.edu Local
Client )< name
192.12.69.60 server

Cs
name
server

DNS Cache Effectiveness

Destination Host Locality
(time since host last accessed)

e All Flows

0.9 A

=== |nter-host only

0.8 -
0.7 -
0.6
0.5
0.4

Cumulative Fraction

0.3
0.2
0.1

0 T T 1
0.1 1 Seconds 10 100




DNS Cache Consistency

e How do we keep cached copies up to date?

DNS entries are modified from time to time
— to change name -> IP address mappings
— to add/delete names

o Cache entries invalidated periodically

each DNS entry has time-to-live (TTL) field: how
long can the local proxy can keep a copy?

if entry accessed after the timeout, get a fresh copy
from the server

how do you pick the TTL?
how long after a change are all the copies updated?

Cache Consistency Alternatives

e Caches used in DNS, web proxies, reverse
web proxies, network file systems, ...
How do you keep cached copy up to date?

¢ Alternatives:

User-driven (HTTP)
— user hits “reload” to fetch latest version
Timeouts (DNS, HTTP 1.0, NFS)
— client fetches periodically; in meantime can be out of date

“If modified-sense” with timeouts (HTTP 1.1)
— client periodically queries server; download if changed




Callback Cache Consistency

o Can we achieve strict consistency?
same as if server was accessed each time

o Callback-based caching
server keeps track of everyone who has a copy
before applying an update

—send message to each copy to invalidate it

—clients then refetch new version next time it is
needed

what about scalability?

Availability

o What happens if DNS service is not working?

o DNS servers are replicated

name service available if at least one replica is
working

gueries load balanced between replicas

Root Root Root
hame name name
server server server




Replica Consistency

Need to keep database consistent across all replicas
as well as all caches

o DNS solution: eventual consistency
changes made to a master server
copied in the background to other replicas
in meantime can get inconsistent results, depending on which
replica you consult
o Alternative: strict consistency

before making a change, notify all replicas to stop serving the
data temporarily (and invalidate any copies)

broadcast new version to each replica
when everyone is updated, allow servers to resume

Eventual Consistency Example

Server
replicas

clients




Sequential Consistency Example

Server
replicas

clients Q

Write doesn’t complete until all
copies invalidated or updated

Building onthe DNS

e Email: tom@cs.washington.edu
DNS record for tom in the domain cs.washington.edu,
specifying where to deliver the email
e Uniform Resource Locators (URLS) name for
Web pages
e.g., www.cs.washington.edu/homes/tom
Use domain name to identify a Web server

Use “/” separated string for file name on the server (or
program to run to generate the page)




Future Evolution of the DNS

o Design constrains us in two major ways that
are increasingly less appropriate

o Static host to IP mapping
What about mobility (Mobile IP) and dynamic
address assignment (DHCP)?

o Location-insensitive queries

Many servers are geographically replicated;
“yahoo.com” doesn’t refer to a single machine or
even a single location (want closest server)

Akamal

o Use the DNS to effect selection of a nearby
Web cache

1
3 2
of |5 ——

Nearby DNS servers
Cache for akamai.com

« Names no longer mean same thing everywhere




