CSE/EE 461 Lecture 15
TCP Congestion Control

Tom Anderson
tom@cs.washington.edu
Peterson, Chapter 6

RPC Fallure Models

e How many times is an RPC done?

Exactly once?

— Server crashes before request arrives

— server crashes after ack, but before reply

— server crashes after reply, but reply dropped
At most once?

— If server crashes, can't know if request was done
At least once?

— Keep retrying across crashes, but may be done multiple
times

— Example: NFS idempotent ops (ex: read/write file block)




Exactly Once RPC

o Example: buy something over Ebay, Amazon
want exactly one widget, book, 100 shares of kozmo

e« Want RPC to be
done exactly once
done completely or not at all
done atomically with respect to other requests
once done, stays done (independent of later crashes)

o Analogous to distributed database transactions

Exactly Once RPC

o Can implement using disk on both ends

client writes “about to make request” to disk
— keep retrying until there is a reply (done/abort)

client sends request
server gets request; computes result

server writes “about to reply” to disk
— along with contents of reply message

server sends reply

client writes “got response” to disk
— to remove request; if crash, don’t want to retry




General’s Paradox

Can we use messages and retries to
synchronize two machines so they are
guaranteed to do some operation at the
same time?

No.

General’s Paradox Illustrated

3:

A




Bandwidth Allocation

o How do we efficiently share network
resources among billions of hosts?

Congestion control

— Sending too fast causes packet loss inside network ->
retransmissions -> more load -> more packet losses -> ...

— Don't send faster than network can accept

Fairness
— How do we allocate bandwidth among different users?
— Each user should get fair share of bandwidth

Congestion

Router : : :
T 1.5-Mbps T1 link

T

Packets dropped here

o Buffer absorbs bursts when input rate > output
« If sending rate is persistently > drain rate, queue builds
o Dropped packets represent wasted work

Chapter 6, Figure 1




Falrness

Router

Destinatio|
2

o Each flow from a source to a destination should get
an equal share of the bottleneck link ... depends on
paths and other traffic

Chapter 6, Figure 2

The Problem

e Original TCP sent full window of data

e When links become loaded, queues fill
up, and this can lead to:

Congestion collapse: when round-trip time
exceeds retransmit interval -- every packet
is retransmitted many times

Synchronized behavior: network oscillates
between loaded and unloaded




Jacobson Solution

o Modify retransmission timer to adapt to
variations in queueing delay
Timeout based on measured RTT and variance
¢ Infer network bandwidth from packet loss

drops => congestion => reduce rate
— drops also caused by link noise!

no drops => no congestion => increase rate
o Limit send rate based on network bandwidth in
addition to receiver buffer space
minimum of what network and receiver can accept

TCP Congestion Control

e Adjust rate to match network bandwidth
Additive increase/multiplicative decrease
— oscillate around bottleneck capacity
Slow start
—quickly identify bottleneck capacity
Fast retransmit
Fast recovery




Tracking the Bottleneck Bandwidth

o Sending rate = window size/RTT

o Multiplicative decrease

Timeout => dropped packet =>
cut window size in half
—and therefore cut sending rate in half

o Additive increase

Ack arrives => no drop =>
increase window size by one packet/window
—and therefore increase sending rate a little

TCP “Sawtooth”

e Oscillates around bottleneck bandwidth
adjusts to changes in competing traffic

Additive I ncrease/M ultiplicative Decr ease
18 1

16 A
14 4
12 4
window 10 -
(insegs) 8 A

6 -

o N B
L




Sow start

e How do we find bottleneck bandwidth?
Start by sending a single packet
— start slow to avoid overwhelming network
Multiplicative increase until get packet loss
—quickly find bottleneck

Remember previous max window size

—shift into linear increase/multiplicative decrease
when get close to previous max ~ bottleneck rate

— called “congestion avoidance”

Slow Start

e Quickly find the bottleneck bandwidth

Sow Start
300

250

200

window

(in segs) 1501

100 4

50 1

0

3 4 5
round-trip times




Slow Start Problems

o Bursty traffic source
will fill up router queues, causing losses for other flows
solution: ack pacing
o Slow start usually overshoots bottleneck
will lose many packets in window
solution: remember previous threshold
e Short flows
Can spend entire time in slow start!
solution: persistent connections?

Avoiding burstiness: ack pacing

bot t| eneck
packets

Sender Recei ver

acks
W ndow size = round trip delay * bit rate




Ack Pacing After Timeout

¢ Packet loss causes timeout,
disrupts ack pacing

slow start/additive increase are
designed to cause packet loss

o After loss, use slow start to
regain ack pacing
switch to linear increase at last
successful rate
“congestion avoidance”

~

Ti meout
/
X/ kp (AR i

Putting It All Together

Slow Start + Congestion Avoidance
187

16
14
12 A
window 10 7
(insegs) g

6

o N b
! L

»

% ]

T T ToT
LI I R R IO R (S
round-trip times

e Timeouts dominate performance!




Fast Retransmit

o Can we detect packet loss without
a timeout?
Receiver will reply to each packet with
an ack for last byte received in order
o Duplicate acks imply either
packet reordering (route change)
packet loss 5

e TCP Tahoe

resend if sender gets three duplicate 5
acks, without waiting for timeout

Fast Retransmit Caveats

o Assumes in order packet delivery

Recent proposal: measure rate of out of order
delivery; dynamically adjust number of dup acks
needed for retransmit

e Doesn’'t work with small windows (e.g. modems)
what if window size <=3
o Doesn’'t work if many packets are lost

example: at peak of slow start, might lose many
packets




Fast Retransmit

Slow Start + Congestion Avoidance
184 + Fast Retranamit

16 1
144
124
window 10 7
(insegs) g |
6
4
2

[0 s s s s S S S B S L S s S S B s S e e |

S R A SRR
round-trip times

o Regaining ack pacing limits performance

Fast Recovery

¢ Use duplicate acks to maintain ack
pacing
duplicate ack => packet left network
after loss, send packet after every
other acknowledgement
o Doesn’'t work if lose many packets
in arow

fall back on timeout and slow start to
reestablish ack pacing




Fast Recovery

Slow Start + Congestion Avoidance

18 + Fast Retransmit + Fast Recovery
16 1
141
121
window 10 7
(insegs) g |
6
21
24
[0 e e e e e e LA N S S S S B B S B B S e S m p
S v x o o AR S S

Delayed ACKS

e Problem:
In request/response programs, server will send
separate ACK and response packets
— computing the response can take time
e TCP solution:
Don’t ACK data immediately
Wait 200ms (must be less than 500ms)
Must ACK every other packet
Must not delay duplicate ACKs




Delayed Ack Impact

e TCP congestion control triggered by acks

if receive half as many acks => window
grows half as fast

e Slow start with window = 1

ack will be delayed, even though sender is
waiting for ack to expand window




