
CSE/EE 461 Lecture 15
TCP Congestion Control

Tom Anderson
tom@cs.washington.edu

Peterson, Chapter 6

RPC Failure Models

● How many times is an RPC done?
■ Exactly once?

– Server crashes before request arrives
– server crashes after ack, but before reply
– server crashes after reply, but reply dropped

■ At most once?
– If server crashes, can’t know if request was done

■ At least once?
– Keep retrying across crashes, but may be done multiple

times
– Example: NFS idempotent ops (ex: read/write file block)

Exactly Once RPC

● Example: buy something over Ebay, Amazon
■ want exactly one widget, book, 100 shares of kozmo

● Want RPC to be
■ done exactly once
■ done completely or not at all
■ done atomically with respect to other requests
■ once done, stays done (independent of later crashes)

● Analogous to distributed database transactions

Exactly Once RPC

● Can implement using disk on both ends
■ client writes “about to make request” to disk

– keep retrying until there is a reply (done/abort)

■ client sends request
■ server gets request; computes result
■ server writes “about to reply” to disk

– along with contents of reply message

■ server sends reply
■ client writes “got response” to disk

– to remove request; if crash, don’t want to retry

General’s Paradox

Can we use messages and retries to
synchronize two machines so they are
guaranteed to do some operation at the
same time?
■ No.

General’s Paradox Illustrated

A B
3:30 ok for launch?

ok, 3:
30 is

good f
or me

so, its 3:30?

yeah,
but wh

at if
you

 don’t
 get t

his ac
k?

Bandwidth Allocation

● How do we efficiently share network
resources among billions of hosts?
■ Congestion control

– Sending too fast causes packet loss inside network ->
retransmissions -> more load -> more packet losses -> …

– Don’t send faster than network can accept

■ Fairness
– How do we allocate bandwidth among different users?
– Each user should get fair share of bandwidth

Chapter 6, Figure 1

● Buffer absorbs bursts when input rate > output
● If sending rate is persistently > drain rate, queue builds
● Dropped packets represent wasted work

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

Congestion

Packets dropped here

Chapter 6, Figure 2

Router

Source
2

Source
1

Source
3

Router

Router

Destination
2

Destination
1

Fairness

● Each flow from a source to a destination should get
an equal share of the bottleneck link … depends on
paths and other traffic

The Problem

● Original TCP sent full window of data
● When links become loaded, queues fill

up, and this can lead to:
■ Congestion collapse: when round-trip time

exceeds retransmit interval -- every packet
is retransmitted many times

■ Synchronized behavior: network oscillates
between loaded and unloaded

Jacobson Solution

● Modify retransmission timer to adapt to
variations in queueing delay
■ Timeout based on measured RTT and variance

● Infer network bandwidth from packet loss
■ drops => congestion => reduce rate

– drops also caused by link noise!

■ no drops => no congestion => increase rate

● Limit send rate based on network bandwidth in
addition to receiver buffer space
■ minimum of what network and receiver can accept

TCP Congestion Control

● Adjust rate to match network bandwidth
■ Additive increase/multiplicative decrease

– oscillate around bottleneck capacity

■ Slow start
– quickly identify bottleneck capacity

■ Fast retransmit

■ Fast recovery

Tracking the Bottleneck Bandwidth

● Sending rate = window size/RTT
● Multiplicative decrease

■ Timeout => dropped packet =>
cut window size in half

– and therefore cut sending rate in half

● Additive increase
■ Ack arrives => no drop =>

increase window size by one packet/window
– and therefore increase sending rate a little

TCP “Sawtooth”

● Oscillates around bottleneck bandwidth
■ adjusts to changes in competing traffic

Additive Increase/Multiplicative Decrease

0
2
4
6
8

10
12
14
16
18

0 3 6 9 12 15 18 21 24 27
round-trip times

window
(in segs)

Slow start

● How do we find bottleneck bandwidth?
■ Start by sending a single packet

– start slow to avoid overwhelming network

■ Multiplicative increase until get packet loss
– quickly find bottleneck

■ Remember previous max window size
– shift into linear increase/multiplicative decrease

when get close to previous max ~ bottleneck rate
– called “congestion avoidance”

Slow Start

● Quickly find the bottleneck bandwidth
Slow Start

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8
round-trip times

window
(in segs)

Slow Start Problems

● Bursty traffic source
■ will fill up router queues, causing losses for other flows
■ solution: ack pacing

● Slow start usually overshoots bottleneck
■ will lose many packets in window
■ solution: remember previous threshold

● Short flows
■ Can spend entire time in slow start!
■ solution: persistent connections?

Avoiding burstiness: ack pacing

Sender Receiver

bottleneck

packets

acks

Window size = round trip delay * bit rate

Ack Pacing After Timeout

● Packet loss causes timeout,
disrupts ack pacing
■ slow start/additive increase are

designed to cause packet loss

● After loss, use slow start to
regain ack pacing
■ switch to linear increase at last

successful rate
■ “congestion avoidance”

1

2
3

4
5

1

1

1

1
1

2

5

T
i
m
e
o
u
t

Putting It All Together

● Timeouts dominate performance!

Slow Start + Congestion Avoidance

0

2

4

6

8

10

12

14

16

18

0 3 6 9 12 15 18 21 24 27 30 33 36 39round-trip times

window
(in segs)

Fast Retransmit

● Can we detect packet loss without
a timeout?
■ Receiver will reply to each packet with

an ack for last byte received in order

● Duplicate acks imply either
■ packet reordering (route change)
■ packet loss

● TCP Tahoe
■ resend if sender gets three duplicate

acks, without waiting for timeout

1

2
3

4
5

1

1

1

1
1

2

5

Fast Retransmit Caveats

● Assumes in order packet delivery
■ Recent proposal: measure rate of out of order

delivery; dynamically adjust number of dup acks
needed for retransmit

● Doesn’t work with small windows (e.g. modems)
■ what if window size <= 3

● Doesn’t work if many packets are lost
■ example: at peak of slow start, might lose many

packets

Fast Retransmit

● Regaining ack pacing limits performance

Slow Start + Congestion Avoidance
+ Fast Retransmit

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28round-trip times

window
(in segs)

Fast Recovery

● Use duplicate acks to maintain ack
pacing
■ duplicate ack => packet left network
■ after loss, send packet after every

other acknowledgement

● Doesn’t work if lose many packets
in a row
■ fall back on timeout and slow start to

reestablish ack pacing

1

2
3

4
5

1

1

1

1
1

2

3

Fast Recovery

Slow Start + Congestion Avoidance
+ Fast Retransmit + Fast Recovery

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20 22 24round-trip times

window
(in segs)

Delayed ACKS

● Problem:
■ In request/response programs, server will send

separate ACK and response packets
– computing the response can take time

● TCP solution:
■ Don’t ACK data immediately
■ Wait 200ms (must be less than 500ms)
■ Must ACK every other packet
■ Must not delay duplicate ACKs

Delayed Ack Impact

● TCP congestion control triggered by acks
■ if receive half as many acks => window

grows half as fast

● Slow start with window = 1
■ ack will be delayed, even though sender is

waiting for ack to expand window

