
CSE/EE 461 Lecture 14
Sockets and RPC

Tom Anderson
tom@cs.washington.edu

Peterson, Chapter 5.3

IP Packet Header Limitations

● Fixed size fields in IPv4 packet header
■ source/destination address (32 bits)

– limits to ~ 4B unique public addresses; about 800M allocated
– NATs map multiple hosts to single public address

■ IP ID field (16 bits)
– limits to 65K fragmented packets at once
– in practice, fewer than 1% of all packets fragment

■ Type of service (8 bits)
– unused until recently; needed to express priorities

■ TTL (8 bits)
– limits maximum Internet path length to 255; typical is 30

■ Length (16 bits)
– Much larger than most link layer MTU’s; path MTU discovery

TCP Packet Header Limitations

● Fixed size fields in TCP packet header
■ seq #/ack # -- 32 bits (can’t wrap within MSL)

– T1 ~ 6.4 hours; OC-192 ~ 3.5 seconds

■ source/destination port # -- 16 bits
– limits # of connections between two machines (NATs)
– ok to give each machine multiple IP addresses

■ header length
– limits # of options

■ receive window size -- 16 bits (64KB)
– rate = window size / delay
– Ex: 100ms delay => rate ~ 5Mb/sec

Sockets

● OS abstraction for a communication endpoint
■ Layer on top of TCP, UDP, local pipes

● server (passive open)
■ bind -- socket to specific local port (e.g., 80)
■ listen -- wait for client to connect
■ read/write or send/receive data

● client (active open)
■ connect – to specific remote port

– TCP: send a SYN
– UDP: return

■ read/write or send/receive data

Remote Procedure Call

● Abstraction: call a procedure on remote machine
■ client calls: Get(“foo”)
■ server invoked as: Get(“foo”)

● Implementation
■ request-response message passing
■ “stub” routines provide glue

● Design pattern used in many different contexts
■ HTTP; NFS (remote file service); DNS

Remote Procedure Call

Client
(caller)

Client
stub

Packet
Handler

Server
(callee)

Server
stub

Packet
Handler

Network
transport

call

return

bundle
args

unbundle
arguments

bundle
ret vals

return

call

unbundle

send

receive

send

receive

Network
transport

RPC Stubs

On client:
get(filename) {
 build message
 send message
 wait for response
 unpack reply
 return result
}

On server:
loop {
 wait for command
 decode command
 unpack arguments
 call procedure (get)
 build reply message
 send reply
}

Procedure Call vs. RPC

● Parameters
■ request message

● Return value
■ reply message

● Name of the procedure
■ passed in request message

● Return address
■ source port

Two Examples

● HTTP search engine query
■ URL encodes parameters as text string
■ On server, page causes search program to be run
■ Reply encoded as web page

● NFS (Network File system)
■ UDP messages
■ Request packet contains command (read/write/stat),

name of file, offset, data (if write), …
■ Reply contains data (if read), return value

Object Oriented RPC

● Two approaches:
■ Every object has local stub object (Jini)

– stub object translates local calls into RPCs

■ Every object pointer is globally valid
– pointer = machine # + address on machine
– compiler translates pointer dereference into RPC

● Function shipping vs. data shipping
■ ship request to the data or data to the request?

RPC on TCP

● How do we reduce the # of
messages?
■ Delayed ack: wait for 200ms

for reply or another pkt arrival

■ UDP: reply serves as ack
– RPC system provides retries,

duplicate supression, etc.
– Typically, no congestion control

SYN

SYN+ACK

ACK

request

ACK

reply

ACK

FIN

ACK

FIN

ACK

Reducing TCP packets for RPCs

● For repeated connections between the
same pair of hosts
■ Persistent HTTP (1.1)

– Keep connection open after web request, in case
there’s more

■ T/TCP -- “transactional” TCP
– Use handshake to init seq #s, recover from crash
– after init, request/reply = SYN+data+FIN

RPC Failure Models

● How many times is an RPC done?
■ Exactly once?

– Server crashes before request arrives
– server crashes after ack, but before reply
– server crashes after reply, but reply dropped

■ At most once?
– If server crashes, can’t know if request was done

■ At least once?
– Keep retrying across crashes, but may be done multiple

times
– Example: NFS idempotent ops (ex: read/write file block)

Exactly Once RPC

● Example: buy something over Ebay, Amazon
■ want exactly one widget, book, 100 shares of kozmo

● Want RPC to be
■ done exactly once
■ done completely or not at all
■ done atomically with respect to other requests
■ once done, stays done (independent of later crashes)

● Analogous to distributed database transactions

Exactly Once RPC

● Can implement using disk on both ends
■ client writes “about to make request” to disk

– keep retrying until there is a reply (done/abort)

■ client sends request
■ server gets request; computes result
■ server writes “about to reply” to disk

– along with contents of reply message

■ server sends reply
■ client writes “got response” to disk

– to remove request; if crash, don’t want to retry

General’s Paradox

Can we use messages and retries to
synchronize two machines so they are
guaranteed to do some operation at the
same time?
■ No.

