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IP Packet Header Limitations

● Fixed size fields in IPv4 packet header
■ source/destination address (32 bits)

– limits to ~ 4B unique public addresses; about 800M allocated
– NATs map multiple hosts to single public address

■ IP ID field (16 bits)
– limits to 65K fragmented packets at once
– in practice, fewer than 1% of all packets fragment

■ Type of service (8 bits)
– unused until recently; needed to express priorities

■ TTL (8 bits)
– limits maximum Internet path length to 255; typical is 30

■ Length (16 bits)
– Much larger than most link layer MTU’s; path MTU discovery



TCP Packet Header Limitations

● Fixed size fields in TCP packet header
■ seq #/ack # -- 32 bits (can’t wrap within MSL)

– T1 ~ 6.4 hours; OC-192 ~ 3.5 seconds

■ source/destination port # -- 16 bits
– limits # of connections between two machines (NATs)
– ok to give each machine multiple IP addresses

■ header length
– limits # of options

■ receive window size -- 16 bits (64KB)
– rate = window size / delay
– Ex: 100ms delay => rate ~ 5Mb/sec

Sockets

● OS abstraction for a communication endpoint
■ Layer on top of TCP, UDP, local pipes

● server (passive open)
■ bind -- socket to specific local port (e.g., 80)
■ listen -- wait for client to connect
■ read/write or send/receive data

● client (active open)
■ connect – to specific remote port

– TCP: send a SYN
– UDP: return

■ read/write or send/receive data



Remote Procedure Call

● Abstraction: call a procedure on remote machine
■ client calls: Get(“foo”)
■ server invoked as: Get(“foo”)

● Implementation
■ request-response message passing
■ “stub” routines provide glue

● Design pattern used in many different contexts
■ HTTP; NFS (remote file service); DNS
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RPC Stubs

On client:
get(filename) {
    build message
    send message
    wait for response
    unpack reply
    return result
}

On server:
loop {
    wait for command
    decode command
    unpack arguments
    call procedure (get)
    build reply message
    send reply
}

Procedure Call vs. RPC

● Parameters
■ request message

● Return value
■ reply message

● Name of the procedure
■ passed in request message

● Return address
■ source port



Two Examples

● HTTP search engine query
■ URL encodes parameters as text string
■ On server, page causes search program to be run
■ Reply encoded as web page

● NFS (Network File system)
■ UDP messages
■ Request packet contains command (read/write/stat),

name of file, offset, data (if write), …
■ Reply contains data (if read), return value

Object Oriented RPC

● Two approaches:
■ Every object has local stub object (Jini)

– stub object translates local calls into RPCs

■ Every object pointer is globally valid
– pointer = machine # + address on machine
– compiler translates pointer dereference into RPC

● Function shipping vs. data shipping
■ ship request to the data or data to the request?



RPC on TCP

● How do we reduce the # of
messages?
■ Delayed ack: wait for 200ms

for reply or another pkt arrival

■ UDP: reply serves as ack
– RPC system provides retries,

duplicate supression, etc.
– Typically, no congestion control
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Reducing TCP packets for RPCs

● For repeated connections between the
same pair of hosts
■ Persistent HTTP (1.1)

– Keep connection open after web request, in case
there’s more

■ T/TCP -- “transactional” TCP
– Use handshake to init seq #s, recover from crash
– after init, request/reply = SYN+data+FIN



RPC Failure Models

● How many times is an RPC done?
■ Exactly once?

– Server crashes before request arrives
– server crashes after ack, but before reply
– server crashes after reply, but reply dropped

■ At most once?
– If server crashes, can’t know if request was done

■ At least once?
– Keep retrying across crashes, but may be done multiple

times
– Example: NFS idempotent ops (ex: read/write file block)

Exactly Once RPC

● Example: buy something over Ebay, Amazon
■ want exactly one widget, book, 100 shares of kozmo

● Want RPC to be
■ done exactly once
■ done completely or not at all
■ done atomically with respect to other requests
■ once done, stays done (independent of later crashes)

● Analogous to distributed database transactions



Exactly Once RPC

● Can implement using disk on both ends
■ client writes “about to make request” to disk

– keep retrying until there is a reply (done/abort)

■ client sends request
■ server gets request; computes result
■ server writes “about to reply” to disk

– along with contents of reply message

■ server sends reply
■ client writes “got response” to disk

– to remove request; if crash, don’t want to retry

General’s Paradox

Can we use messages and retries to
synchronize two machines so they are
guaranteed to do some operation at the
same time?
■ No.


