CSE/EE 461 Lecture 13
Connections and Fragmentation

Tom Anderson
tom@cs.washington.edu
Peterson, Chapter 5.2

TCP Connection Management

Setup
assymetric 3-way handshake
Transfer
sliding window; data and acks in both directions
Teardown
symmetric 2-way handshake
Client-server model
initiator (client) contacts server
listener (server) responds, provides service




Three-Way Handshake

o Opens both directions for transfer

Active participant Passive participant
(client) (server)

TCP Transfer

o Connection is bi-directional
acks can carry response data

(client) (server)




TCP Connection Teardown

Symmetric: either side can close connection

Web server Web browser

Fin

Half-open connection; data
can be continue to be sent

=\

ACk
Can reclaim connection
after 2 MSL ACk

Can reclaim connection right away
(must be at least IMSL after first FIN

TCP State Transitions

CLOSED

Active open/SYN
Passive open

LISTEN

ESTABLISHHD

Close /FIN

Close /FIN

FIN/ACK

FIN_WAIT_:

CLOSE_WA|

Close /FIN

FIN/ACK

CLOSING

Timeout after two
AC segment lifetime: ACK

TIME_WAIT CLOSED

FIN/ACK h




TCP Connection Setup, with States

Active participant Passive participant
(client) (server)
SYN_SENT LISTEN
SYN_RCVD
ESTABLISHED
ESTABLISHED

TCP Connection Teardown

Web server Web browser
FIN_WAIT 1 FIN
CLOSE_WAIT
e -
LAST_ACK
FIN_WAIT 2 /
TIME_WAIT |
— k
CLOSED CLOSED




The TIME_WAIT State

o We wait 2MSL (two times the maximum
segment lifetime of 60 seconds) before
completing the close

o ACK might have been lost and so FIN will be
resent

o Could interfere with a subsequent connection

TCP Handshake in an
Uncooperative Internet

e TCP HljaCklng Malicious attacker

if seq # is predictable, Client Server
attacker can insert
packets into TCP stream

many implementations of
TCP simply bumped
previous seq # by 1
attacker can learn seq #
by setting up a connection
e Solution: use random
initial sequence #'s
weak form of fake web page, y;g/l‘fasge.
authentication b




TCP Handshake in an
Uncooperative Internet

e TCP SYN flood
Malicious attacker Server

server maintains state for
every open connection

if attacker spoofs source
addresses, can cause
server to open lots of
connections

eventually, server runs
out of memory

TCP SY N cookies

e Solution: SYN cookies ciient Server
Server keeps no state in SYN, s,
response to SYN; instead q“e”Ce/vum sy
makes client store state
Server picks return seq # RS 1
y = © that encrypts x YN+ I
Gets © +1 from sender; ACK o4
unpacks to yield x \




|P Fragmentation

e Both TCP and IP fragment and reassemble
packets. Why?
IP packets traverse heterogeneous nets

Each network has its own max transfer unit

— Ethernet ~ 1400 bytes; FDDI ~ 4500 bytes

— P2P ~ 532 bytes; ATM ~ 53 bytes; Aloha ~ 80bytes
Path is transparent to end hosts

— can change dynamically (but usually doesn't)

o IP routers fragment; hosts reassemble

Fragmentation Example

o Different networks may
have different frame
limits (MTUS) ! ’ F

Ethernet 1.5K, FDDI 4.5K

o Don't know if packet will

be too big beforehand

IPv4: fragment on
demand and reassemble
at destination

IPv6: network returns
error message so host
can learn limit

Network 2 (Ethernet)

Fragment?

Network 3 (FDDI)




Fragment Fields

4 8 16 19 31
e Fragments veraon ] oL oS Lenath
. . g ersion en eng
identified by
(SI‘C deSt |d) Identifier for Fragments Flags Fragment Offset
Offset gives TTL Protocol Checksum
Start, |ength Source Address
° F|agS Destination Address
(I\l/l\/lolg)e Fragments Options (variable) (va?iéelxclg)le)
Don’t Fragment /\/\/\/\;ﬂa\/\/\/\

Fragment Considerations

o Relating fragments to original datagram provides:
Tolerance of loss, reordering and duplication
Ability to fragment fragments

o Consequences of fragmentation:

Loss of any fragments causes loss of entire packet
— possibility of congestion collapse!

Need to time-out reassembly when any fragments lost
Complicates router hardware => slow path
Limits sending speed?
— To avoid duplicates confusion: 2*16/MSL ~ 500 pkts/sec
o Better to avoid fragmenting if at all possible!




How can TCP choose segment size?

e Pick LAN MTU as segment size?
LAN MTU usually larger than WAN MTU
=> Most Internet traffic would be fragmented
e Pick smallest MTU across all networks in
Internet?

Most traffic is local!
— Local file server, web proxy, DNS cache, ...

Increases packet processing overhead
e Discover MTU to each destination?
Path MTU discovery

Path MTU Discovery

e Path MTU is the smallest MTU along path
Packets less than this size don't get fragmented

o Hosts send packets with DF (don’t fragment) set
Routers return ICMP packet to source if too large
— similar to TTL exceeded

Binary search to find largest MTU that doesn’t
fragment
— separately for each destination subnet

Source TCP uses as segment size
Destination TCP reassembles




Layering Revisited

e IP layer “transparent” packet delivery

Implementation decisions affect higher
layers (and vice versa)
— Fragmentation => reassembly overhead
» path MTU discovery
— Packet loss => congestion or lossy link?
« link layer retransmission
— Reordering => packet loss or multipath?
« router hardware tries to keep packets in order
—FIFO vs. active queue management

|P Packet Header Limitations

o Fixed size fields in IPv4 packet header
source/destination address (32 bits)

— limits to ~ 4B unigue public addresses; about 800M allocated

— NATs map multiple hosts to single public address
IP ID field (16 bits)

— limits to 65K fragmented packets at once

— in practice, fewer than 1% of all packets fragment
Type of service (8 bits)

— unused until recently; needed to express priorities
TTL (8 bits)

— limits maximum Internet path length to 255; typical is 30

Length (16 bits)

— Much larger than most link layer MTU'’s; path MTU discovery




TCP Packet Header Limitations

o Fixed size fields in TCP packet header
seq #/ack # -- 32 bits (can’t wrap within MSL)
— T1 ~ 6.4 hours; OC-192 ~ 3.5 seconds
source/destination port # -- 16 bits
— limits # of connections between two machines (NATS)
— ok to give each machine multiple IP addresses
header length
— limits # of options
receive window size -- 16 bits (64KB)

— rate = window size / delay
— Ex: 100ms delay => rate ~ 5Mb/sec




