
CSE/EE 461 Lecture 13
Connections and Fragmentation

Tom Anderson
tom@cs.washington.edu

Peterson, Chapter 5.2

TCP Connection Management

● Setup
■ assymetric 3-way handshake

● Transfer
■ sliding window; data and acks in both directions

● Teardown
■ symmetric 2-way handshake

● Client-server model
■ initiator (client) contacts server
■ listener (server) responds, provides service

Three-Way Handshake

● Opens both directions for transfer
Active participant

(client)
Passive participant

(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

TCP Transfer

● Connection is bi-directional
■ acks can carry response data

(client) (server)

Seq = x + MSS; Ack = y+1

Seq = y+MSS; Ack = x+2MSS+1

Seq = x + 2*MSS; Ack = y+1

Seq = x + 3*MSS; Ack = y+MSS+1

TCP Connection Teardown

Symmetric: either side can close connection
Web server Web browser

FIN

ACK

data, ACK

FIN

data, ACK

ACK

Half-open connection; data
can be continue to be sent

Can reclaim connection right away
(must be at least 1MSL after first FIN)

Can reclaim connection
after 2 MSL

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/ SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close /FIN

FIN/ACKClose /FIN

FIN/ACK

Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close /FIN

Close

CLOSED

Active open /SYN

TCP State Transitions

TCP Connection Setup, with States

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

TCP Connection Teardown

Web server Web browser

FIN

ACK

ACK

FIN

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK
FIN_WAIT_2

TIME_WAIT

CLOSEDCLOSED

…

The TIME_WAIT State

● We wait 2MSL (two times the maximum
segment lifetime of 60 seconds) before
completing the close

● Why?

● ACK might have been lost and so FIN will be
resent

● Could interfere with a subsequent connection

TCP Handshake in an
Uncooperative Internet

● TCP Hijacking
■ if seq # is predictable,

attacker can insert
packets into TCP stream

■ many implementations of
TCP simply bumped
previous seq # by 1

■ attacker can learn seq #
by setting up a connection

● Solution: use random
initial sequence #’s
■ weak form of

authentication

Malicious attacker

Server

SYN, SequenceNum = x

SYN + ACK, y, x + 1

Client

“HTTP get URL”, x + MSS

web page, y + MSS

ACK, y+1

fake web page, y+MSS

TCP Handshake in an
Uncooperative Internet

● TCP SYN flood
■ server maintains state for

every open connection
■ if attacker spoofs source

addresses, can cause
server to open lots of
connections

■ eventually, server runs
out of memory

Malicious attacker Server

SYN, SequenceNum = x

SYN + ACK, y, x + 1

SYN, p SYN, qSYN, r
SYN, s

TCP SYN cookies

● Solution: SYN cookies
■ Server keeps no state in

response to SYN; instead
makes client store state

■ Server picks return seq #
y = © that encrypts x

■ Gets © +1 from sender;
unpacks to yield x

Client Server

SYN, SequenceNum = x

SYN + ACK, ©, x + 1

ACK, © + 1

IP Fragmentation

● Both TCP and IP fragment and reassemble
packets. Why?
■ IP packets traverse heterogeneous nets
■ Each network has its own max transfer unit

– Ethernet ~ 1400 bytes; FDDI ~ 4500 bytes
– P2P ~ 532 bytes; ATM ~ 53 bytes; Aloha ~ 80bytes

■ Path is transparent to end hosts
– can change dynamically (but usually doesn’t)

● IP routers fragment; hosts reassemble

Fragmentation Example

● Different networks may
have different frame
limits (MTUs)
■ Ethernet 1.5K, FDDI 4.5K

● Don’t know if packet will
be too big beforehand
■ IPv4: fragment on

demand and reassemble
at destination

■ IPv6: network returns
error message so host
can learn limit

R1

H4

H5

H3H2H1

Network 2 (Ethernet)

H6

Network 3 (FDDI)

Fragment?

Fragment Fields

● Fragments
identified by
(src, dest, id)
■ Offset gives

start, length

● Flags
■ More Fragments

(MF)
■ Don’t Fragment

(DF)

Version HLen TOS Length

Identifier for Fragments Flags Fragment Offset

TTL Protocol Checksum

Source Address

Destination Address

Options (variable) Pad
(variable)

0 4 8 16 19 31

Data

Fragment Considerations

● Relating fragments to original datagram provides:
■ Tolerance of loss, reordering and duplication
■ Ability to fragment fragments

● Consequences of fragmentation:
■ Loss of any fragments causes loss of entire packet

– possibility of congestion collapse!

■ Need to time-out reassembly when any fragments lost
■ Complicates router hardware => slow path
■ Limits sending speed?

– To avoid duplicates confusion: 2^16/MSL ~ 500 pkts/sec

● Better to avoid fragmenting if at all possible!

How can TCP choose segment size?

● Pick LAN MTU as segment size?
■ LAN MTU usually larger than WAN MTU
=> Most Internet traffic would be fragmented

● Pick smallest MTU across all networks in
Internet?
■ Most traffic is local!

– Local file server, web proxy, DNS cache, ...

■ Increases packet processing overhead

● Discover MTU to each destination?
■ Path MTU discovery

Path MTU Discovery

● Path MTU is the smallest MTU along path
■ Packets less than this size don’t get fragmented

● Hosts send packets with DF (don’t fragment) set
■ Routers return ICMP packet to source if too large

– similar to TTL exceeded

■ Binary search to find largest MTU that doesn’t
fragment

– separately for each destination subnet

■ Source TCP uses as segment size
■ Destination TCP reassembles

Layering Revisited

● IP layer “transparent” packet delivery
■ Implementation decisions affect higher

layers (and vice versa)
– Fragmentation => reassembly overhead

● path MTU discovery

– Packet loss => congestion or lossy link?
● link layer retransmission

– Reordering => packet loss or multipath?
● router hardware tries to keep packets in order

– FIFO vs. active queue management

IP Packet Header Limitations

● Fixed size fields in IPv4 packet header
■ source/destination address (32 bits)

– limits to ~ 4B unique public addresses; about 800M allocated
– NATs map multiple hosts to single public address

■ IP ID field (16 bits)
– limits to 65K fragmented packets at once
– in practice, fewer than 1% of all packets fragment

■ Type of service (8 bits)
– unused until recently; needed to express priorities

■ TTL (8 bits)
– limits maximum Internet path length to 255; typical is 30

■ Length (16 bits)
– Much larger than most link layer MTU’s; path MTU discovery

TCP Packet Header Limitations

● Fixed size fields in TCP packet header
■ seq #/ack # -- 32 bits (can’t wrap within MSL)

– T1 ~ 6.4 hours; OC-192 ~ 3.5 seconds

■ source/destination port # -- 16 bits
– limits # of connections between two machines (NATs)
– ok to give each machine multiple IP addresses

■ header length
– limits # of options

■ receive window size -- 16 bits (64KB)
– rate = window size / delay
– Ex: 100ms delay => rate ~ 5Mb/sec

