
CSE/EE 461 Lecture 12
TCP

Tom Anderson
tom@cs.washington.edu
Peterson, Chapter 5.2, 6

A brief Internet history...

1970 1975 1980 1985 1990 1995

1969
ARPANET

created

1972
TELNET

RFC 318

1973
FTP

RFC 454

1982
TCP & IP
RFC 793 & 791

1977
MAIL
RFC 733

1984
DNS

RFC 883

1986
NNTP
RFC 977

1990
ARPANET

dissolved

1991
WWW/HTTP

1992
MBONE

1995
Multi-backbone

Internet

TCP: This is your life...

1975 1980 1985 1990

1982
TCP & IP
RFC 793 & 791

1974
TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983
BSD Unix 4.2

supports TCP/IP

1984
Nagel’s algorithm
to reduce overhead
of small packets;

predicts congestion
collapse

1987
Karn’s algorithm
to better estimate
round-trip time

1986
Congestion

collapse
observed

1988
Van Jacobson’s

algorithms
congestion avoidance
and congestion control
(most implemented in

4.3BSD Tahoe)

1990
4.3BSD Reno
fast retransmit
delayed ACK’s

1975
Three-way handshake

Raymond Tomlinson
In SIGCOMM 75

TCP: After 1990

1993 1994 1996

1994
ECN

(Floyd)
Explicit

Congestion
Notification

1993
TCP Vegas

(Brakmo et al)
real congestion

avoidance

1994
T/TCP

(Braden)
Transaction

TCP

1996
SACK TCP
(Floyd et al)

Selective
Acknowledgement

1996
Hoe

Improving TCP
startup

1996
FACK TCP
(Mathis et al)

extension to SACK

2002
TCP Rainier

???

Transmission Control Protocol (TCP)

● Reliable bi-directional byte stream
■ No message boundaries
■ Ports as application endpoints

● Sliding window, go back N, RTT est, …
■ Highly tuned congestion control algorithm

● Connection setup
■ negotiate buffer sizes and initial seq #s

● Flow control
■ prevent sender from overrunning receiver buffers

TCP Packet Header

● Source, destination
ports

● Sequence # (bytes
being sent)

● Ack # (next byte
expected)

● Receive window size
● Checksum
● Flags: SYN, FIN, RST

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Delivery

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …

IP x.html IP TCP get inde

TCP Sliding Window

● Per-byte, not per-packet
■ send packet says “here are bytes j-k”
■ ack says “received up to byte k”

● Send buffer >= send window
■ can buffer writes in kernel before sending
■ writer blocks if try to write past send buffer

● Receive buffer >= receive window
■ buffer acked data in kernel, wait for reads
■ reader blocks if try to read past acked data

Visualizing the window

4 5 6 7 8 91 2 3 10 11 12

offered window
(advertised by receiver)

usable window

sent and
acknowledged

sent, not ACKed

can send ASAP
can’t send until
window moves

Left side of window advances when data is acknowledged.
Right side controlled by size of window advertisement

Flow Control

● What if sender process is faster than receiver
process?
■ Data builds up in receive window
■ if data is acked, sender will send more!
■ If data is not acked, sender will retransmit!

● Sender must transmit data no faster than it can be
consumed by the receiver
■ Receiver might be a slow machine
■ App might consume data slowly

● Sender sliding window <= free receiver buffer
■ Advertised window = # of free bytes; if zero, stop

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

Sender and Receiver Buffering

= available buffer = buffer in use

Example – Exchange of Packets

SEQ=1

SEQ=2

SEQ=3
SEQ=4

ACK=2; WIN=3

ACK=3; WIN=2

ACK=4; WIN=1

ACK=5; WIN=0

Receiver has
buffer of size 4
and application
doesn’t readStall due to

flow control
here

T=1

T=2

T=3

T=4

T=5

T=6

Example – Buffer at Sender

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

T=1

T=2

T=3

T=4

T=5

T=6

=acked

=sent

=advertised

How does sender know when to
resume sending?

● If receive window = 0, sender stops
■ no data => no acks => no window updates

● Sender periodically pings receiver with
one byte packet
■ receiver acks with current window size

● Why not have receiver ping sender?

Should sender be greedy (I)?

● Should sender transmit as soon as any
space opens in receive window?
■ Silly window syndrome

– receive window opens a few bytes
– sender transmits little packet
– receive window closes

● Solution (Clark, 1982): sender doesn’t
resume sending until window is half open

Should sender be greedy (II)?

● App writes a few bytes; send a packet?
■ Don’t want to send a packet for every keystroke
■ If buffered writes >= max segment size
■ if app says “push” (ex: telnet, on carriage return)
■ after timeout (ex: 0.5 sec)

● Nagle’s algorithm
■ Never send two partial segments; wait for first to

be acked, before sending next
■ Self-adaptive: can send lots of tinigrams if network

is being responsive

Connections

● Both sender and receiver must be ready before
we start to transfer the data
■ Sender and receiver need to agree on a set of

parameters
■ ex: receive buffer size, initial sliding window variables

● Sender and receiver must agree when transfer
is over
■ Both sides must discard state

● This is signaling
■ It sets up/tears down state at the endpoints
■ Compare to “dialing” in the telephone network

TCP Connection Management

● Setup
■ assymetric 3-way handshake

● Transfer
■ sliding window; data and acks in both directions

● Teardown
■ symmetric 2-way handshake

● Client-server model
■ initiator (client) contacts server
■ listener (server) responds, provides service

Three-Way Handshake

● Opens both directions for transfer
Active participant

(client)
Passive participant

(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

Do we need 3-way handshake?

● Allows both sides to
■ allocate state for buffer size, state variables, …
■ calculate estimated RTT, estimated MTU, etc.

● Helps prevent
■ Duplicates across incarnations
■ Intentional hijacking

– random nonces => weak form of authentication

● Proposals to short-circuit
■ Persistent connections in HTTP (keep connection open)
■ Transactional TCP (save seq #, reuse on reopen)

TCP Transfer

● Connection is bi-directional
■ acks can carry response data

(client) (server)

Seq = x + MSS; Ack = y+1

Seq = y+MSS; Ack = x+2MSS+1

Seq = x + 2*MSS; Ack = y+1

Seq = x + 3*MSS; Ack = y+MSS+1

TCP Connection Teardown

Symmetric: either side can close connection
Web server Web browser

FIN

ACK

data, ACK

FIN

data, ACK

ACK

Half-open connection; data
can be continue to be sent

Can reclaim connection right away
(must be at least 1MSL after first FIN)

Can reclaim connection
after 2 MSL

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/ SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close /FIN

FIN/ACKClose /FIN

FIN/ACK

Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close /FIN

Close

CLOSED

Active open /SYN

TCP State Transitions

TCP Connection Setup, with States

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

TCP Connection Teardown

Web server Web browser

FIN

ACK

ACK

FIN

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK
FIN_WAIT_2

TIME_WAIT

CLOSEDCLOSED

…

The TIME_WAIT State

● We wait 2MSL (two times the maximum
segment lifetime of 60 seconds) before
completing the close

● Why?

● ACK might have been lost and so FIN will be
resent

● Could interfere with a subsequent connection

