CSE/EE 461 Lecture 11
Transport: Theory and Practice

Tom Anderson
tom@cs.washington.edu
Peterson, Chapter 2.5, 5.2

Transport Challenge

e IP: routers can be arbitrarily bad

packets can be lost, reordered, duplicated,
have limited size & can be fragmented

o TCP: applications need something better

reliable delivery, in order delivery, no
duplicates, arbitrarily long streams of data,
match sender/receiver speed, process-to-
process

Sliding Window:
Reliable, ordered delivery

e TWO constraints:

Receiver can't deliver packet to application until all
prior packets have arrived

Sender must prevent buffer overflow at receiver

e Solution: sliding window

circular buffer at sender and receiver
— packets in transit <= buffer size

— advance when sender and receiver agree packets at
beginning have been received

Sender/Recelver State

e sender
packets sent and acked (LAR = last ack recvd)
packets sent but not yet acked
packets not yet sent (LFS = last frame sent)

e receiver

packets received and acked (NFE = next frame
expected)

packets received out of order
packets not yet received (LFA = last frame ok)

Sliding Window

Send W ndow
¥ \
012 3 45 ¢
sent | x|x| x|Xx|x|x|x
acked [x
f A
LAR LFS
Recei ve W ndow
01 ﬁ/ 34 5 6
recvd |x|x X | x| x| x
acked [x|x
t A
NFE LFA

Sender Algorithm (Go Back N)

Send full window, set timeout

On receiving an ack:
if it increases LAR (last ack received)

send next packet(s)
-- no more than window size outstanding at once

else (already received this ack)

if receive multiple acks for LAR, next packet may have been
lost; retransmit LAR + 1; called “fast retransmit”

On timeout:
resend LAR + 1 (first packet not yet acked)

Receiver Algorithm (Go Back N)

On packet arrival:

if packet is the NFE (next frame expected)
send ack
increase NFE
hand any packet(s) below NFE to application

else if < NFE (packet already seen and acked)
send ack and discard

else (packet is > NFE, arrived out of order)

buffer and send ack for NFE — 1
-- signal sender that NFE might have been lost

What if link isvery lossy?

o Wireless packet loss rates can be 10-30%
end to end retransmission will still work
will be inefficient, especially with go back N
e Solution: hop by hop retransmission
performance optimization, not for correctness
e End to end principle
ok to do optimizations at lower layer
still need end to end retransmission; why?

Avoiding burstiness: ack pacing

bot t| eneck
packets

Sender Recei ver

acks
W ndow size = round trip delay * bit rate

How many sequence #’°s?

e Window size + 17?
Suppose window size = 3
Sequencespace: 01230123

send 0 1 2, all arrive
—if acks are lost, resend 0 1 2
—if acks arrive, send new 301

e Window <= (maxseq#+1)/2

How do we determine timeouts?

¢ |f timeout too small, useless retransmits
can lead to congestion collapse (and did in 86)

as load increases, longer delays, more timeouts,
more retransmissions, more load, longer delays,
more timeouts ...

o If timeout too big, inefficient
wait too long to send missing packet
e Timeout should be based on actual round trip
time (RTT)
varies with destination subnet, routing changes,
congestion, ...

Estimating RTTs

o Idea: Adapt based on recent past measurements
For each packet, note time sent and time ack received

Compute RTT samples and average recent samples for
timeout

EstimatedRTT = a x EstimatedRTT + (1 - a) X
SampleRTT

This is an exponentially-weighted moving average (low
pass filter) that smoothes the samples. Typically,
a=0.810 0.9.

Set timeout to small multiple (2) of the estimate

Estimated Retransmit Timer

Retransmission ambiguity

e How do we distinguish first
ack from retransmitted ack?
First send to first ack?
—What if ack dropped?
Last send to last ack?
—What if last ack dropped?
o Might never be able to fix too
short a timeout!

Ti e

A/

Retransmission ambiguity:
Solutions?

o TCP: Karn-Partridge
ignore RTT estimates for retransmitted pkts
double timeout on every retransmission
o Add sequence #'s to retransmissions
(retry #1, retry #2, ...)

e TCP proposal: Add timestamp into
packet header; ack returns timestamp

Jacobson/K arels Algorithm

e Problem:
Variance in RTTs gets large as network gets loaded
Average RTT isn’t a good predictor when we need it
most

e Solution: Track variance too.
Difference = SampleRTT — EstimatedRTT
EstimatedRTT = EstimatedRTT + (0 x Difference)
Deviation = Deviation + &(|Difference|- Deviation)
Timeout = p x EstimatedRTT + @ x Deviation
In practice, d=1/8, p=1and =4

Estimate with Mean + Variance

fh :l AN
RN ¢ v y o & I
- |
AETETTR R R R R R e e J
Transport: Practice
e Protocols

IP -- Internet protocol

UDP -- user datagram protocol
TCP -- transmission control protocol
RPC -- remote procedure call

HTTP -- hypertext transfer protocol

How do we connect processes?

e |IP provides host to host packet delivery
header has source, destination IP address
o For applications to communicate, need to
demux packets sent to host to target app

Web browser (HTTP), Email servers (SMTP),
hostname translation (DNS), RealAudio
player (RTSP), etc.

Process id is OS-specific and transient

Ports

e Portis a mailbox that processes “rent”
Uniquely identify communication endpoint as
(IP address, protocol, port)
e How do we pick port #'s?
Client needs to know port # to send server a request

Servers bind to “well-known” port numbers
— Ex: HTTP 80, SMTP 25, DNS 53, ...
— Ports below 1024 reserved for “well-known” services

Clients use OS-assigned temporary (ephemeral)
ports

— Above 1024, recycled by OS when client finished

User Datagram Protocol (UDP)

Provides application — application delivery

Header has source & dest port #'s
IP header provides source, dest IP addresses

Deliver to destination port on dest machine

Reply returns to source port on source
machine

No retransmissions, no sequence #s

=> stateless

UDP Delivery

Application
process

Application Application
process process

Kernel
Ports — boundary

Message
Queues

Il =

DeMux

Packets arrive

Transmission Control Protocol
(TCP)

Reliable bi-directional byte stream

No message boundaries

Uses ports to identify application endpoints
Sliding window, go back N, RTT est, ...

Highly tuned congestion control algorithm
Connection setup

negotiate buffer sizes and initial seq #s

Flow control
prevent sender from overrunning receiver buffers

TCP Ddlivery

Application process Application process
3 =]

L1 write L] Read
bytes . bytes
vy]
TCP TCP
Send buffer Receive buffe
Transmit segments !
| Segment| [Segment]---[Segment]
/

P xhtmi | [1p] TcP[get inde |

TCP Sliding Window

o Per-byte, not per-packet
send packet says “here are bytes j-k”
ack says “received up to byte k”
e Send buffer >= send window
can buffer writes in kernel before sending
writer blocks if try to write past send buffer
o Receive buffer >=receive window
buffer acked data in kernel, wait for reads
reader blocks if try to read past acked data

