CSE/EE 461 Introduction to Computer Communication Networks

Tom Anderson

Janet Davis, Sushant Jain, Eric Lemar

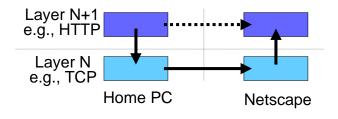
Why Study Networks?

- Large scale system design
 - How do you get 100M+ hosts across tens of thousands of organizations all working together?
 - History lesson: intuition doesn't scale
- Layers of Abstraction
 - Network protocols as wizard, turning photons into the web
- How things really work
 - "Look under the hood" of the Internet

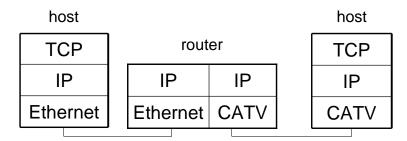
A Definition

Protocol: agreement between two or more parties as to how information is to be exchanged

Problems in network protocol design:

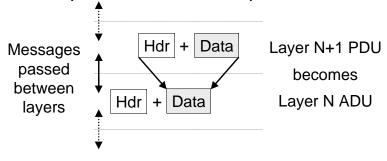

- No shared state!
- Component failures
- Self-interested parties
- Migration path for introducing new protocols
- Proliferation of protocols/division of labor

Some Example Protocols


ADSL, ISDN, DS-3, SONET, Frame Relay, PPP, BISYNC, HDLC, SLIP, Ethernet, 10Base-T, 100Base-T, CRC, 802.5, FDDI, 802.11, ATM, AAL5, X.25, IPv4, IPv6, TTL, DHCP, ICMP, OSPF, RIP, IS-IS, BGP, S-BGP, CIDR, TCP, SACK, UDP, RDP, DNS, RED, DECbit, SunRPC, DCE, XDR, JPEG, MPEG, MP3, BOOTP, ARP, RARP, IGMP, CBT, MOSPF, DVMRP, PIM, RTP, RTCP, RSVP, COPS, DiffServ, IntServ, DES, PGP, Kerberos, MD5, IPsec, SSL, SSH, telnet, HTTP, HTTPS, HTML, FTP, TFTP, UUCP, X.400, SMTP, POP, MIME, NFS, AFS, SNMP, ...

Layering and Protocol Stacks

- Layering is how we combine protocols
 - Higher level protocols build on services provided by lower levels
 - Peer layers communicate with each other

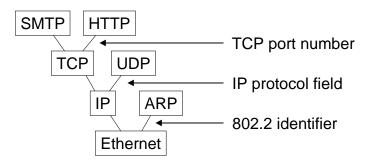

Example – Layering at work

We can connect different systems

Layering Mechanics

Encapsulation and decapsulation

A Packet on the Wire


Starts looking like an onion!

- This isn't entirely accurate
 - ignores segmentation and reassembly, Ethernet trailers, etc.

More Layering Mechanics

 Multiplexing and demultiplexing in a protocol graph

What Functionality Goes Where?

End to end principle: Functionality should be implemented at a lower layer iff it can be correctly and completely implemented there

OSI Model: 7 Protocol Layers

- Physical -- how to transmit bits
- Data link -- how to transmit frames
- Network -- how to route packets
- Transport -- how to send packets reliably
- Session manage connections
- Presentation encode/decode msgs, security
- Application -- everything else!

Internet Protocol Model

Application

Transport

Network

Link

Model

Many

(HTTP,SMTP)

TCP / UDP

IP

Many

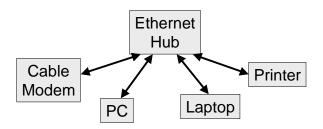
(Ethernet, ...)

Protocols

Course Topics

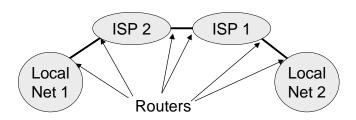
- Internet architecture
- Link layer (Ethernet)
- Routing (IP)
- Transport (TCP/UDP)
- Congestion control
- Services (DNS)
- Multicast (Mbone)
- Real time (DiffServ)
- Security (Kerberos)

- End to end principle
- Efficient signalling
- Robust interoperability
- Reliable delivery
- Resource allocation
- Distributed state mgt
- Efficient delivery
- Multimedia
- How to write a virus


Course Mechanics

- Lectures
 - Network protocol design, concepts and examples
 - Peterson & Davie, Computer Networks, 2nd ed.
- Fishnet programming assignments
 - Build a classwide network
 - Sections will largely focus on fishnet
 - Don't take class if you can't program!
- Problem sets, midterm and final

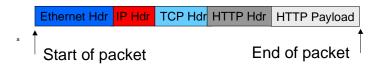
Some More Definitions

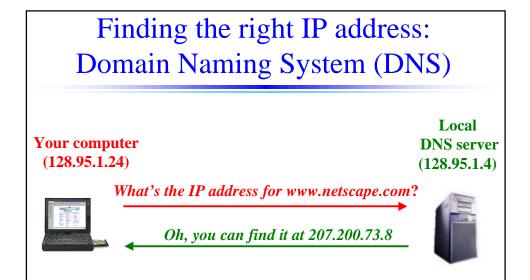

- Link carry information (bits)
 - wire or wireless
 - Point to point or broadcast
- Switch -- move bits between links
 - packet switching: stateless store&forward
 - circuit switching: stateful, cut through
- Host communication endpoint
 - computer, PDA, toaster, ...
- Network -- delivers messages between hosts over a collection of links and switches

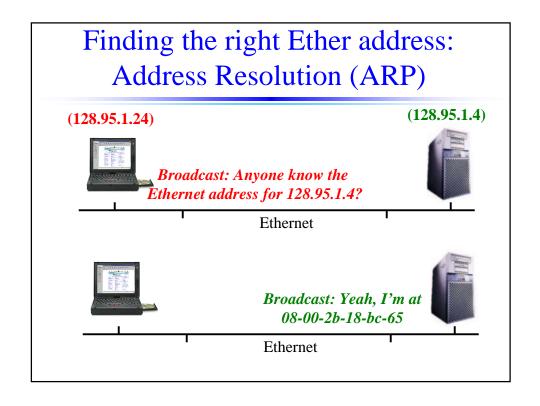
Example – Local Area Network

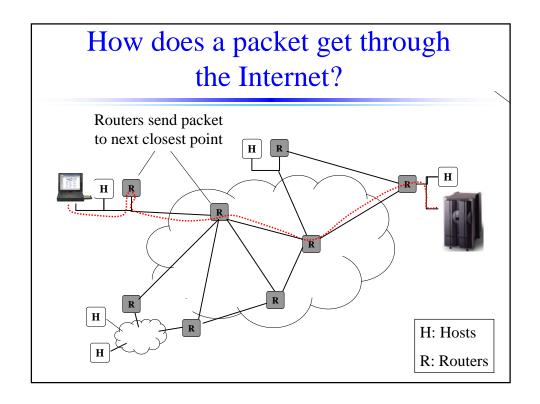
- Your home network
 - Ethernet is a broadcast-capable multi-access LAN

Example – the Internet

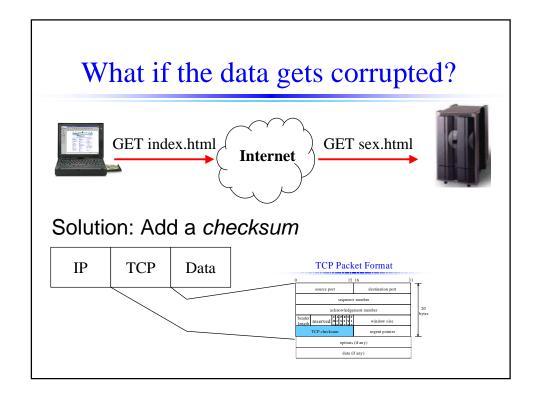


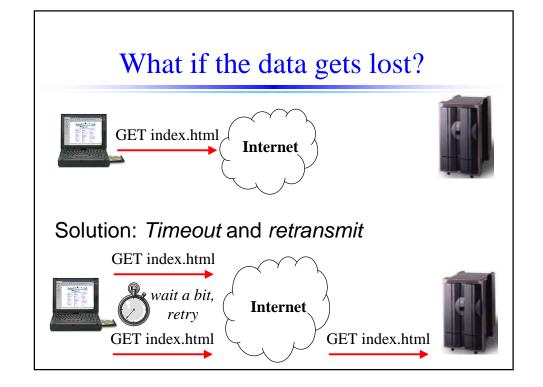

- The Internet is a network of networks
 - Networks deliver packets (& locate nodes)
 - Routers move packets between networks
 - IP is protocol spoken between routers
 - Underlying networks free to use any internal protocol


What happens when you click on a Web link? Your computer **www.netscape.com** Internet **The property of the property of t


Different kinds of addresses

- Domain name (e.g. www.netscape.com)
 - Global, human readable
- IP Address (e.g. 207.200.73.8)
 - Global, works across all networks
- Ethernet (e.g. 08-00-2b-18-bc-65)
 - Local, works on a particular network
- Packet often has all three!

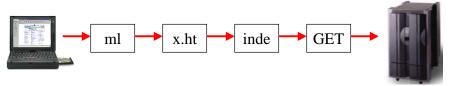



How do the routers know where to send data?

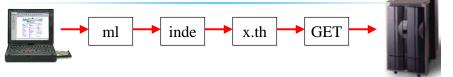
- Forwarding tables at each router
- First try: manual update
- Automatic update based on "cost"
 - exchange tables with neighbors
 - use neighbor with smallest hop count
 - how do we upgrade the routing algorithm?
 - what if router says it has zero cost to everywhere?

Have address, now send data?

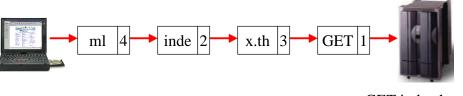
- Murphy's Law applies to networks
 - Data can be corrupted
 - Data can get lost
 - Data might not fit in a single packet
 - Data can be delivered in the wrong order
 - etc...



What if the data doesn't fit?


- On Ethernet, max IP packet is 1.5kbytes
- Typical web page is 10kbytes

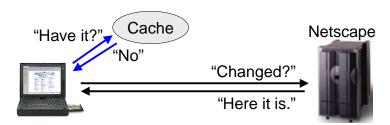
Solution: Fragment data across packets


GET index.html

What if the data is out of order?

GET x.thindeml

Solution: Add sequence numbers



GET index.html

What if network is overloaded?

- Data can arrive at router faster than it can be forwarded!
- Short bursts: buffer at router
- What if buffer overflows?
 - Packets dropped and retransmitted
 - Sender adjusts rate until load = resources
- Called "Congestion control"
 - Broadcast network: bus arbitration

What if we need the same data again?

Caching cuts down on transfers:

- Check cache (local or proxy) for a copy
- Check with server for a new version
- Local DNS server caches too!

What if data has a deadline?

- Ex: multimedia, teleconferencing
- Original Internet: out of luck!
- To provide guarantees, need
 - admission control
 - resource management at routers
- Ex: Telephone network has busy signals
 + explicit schedules at each switch
- How do we add this to the Internet?

What if multiple receivers?

- Send a separate packet to each?
 - what if zillions of receivers?
- Multicast
 - routers form distribution tree
- What if data is dropped?
 - Acks would overwhelm sender
 - Naks? if drop is early in the tree -> overwhelm sender!

What if sender is malicious?

- Every packet has source, destination IP addresses
- But! Host can put anything in IP header
 - packet may have come from anywhere
 - firewalls to enforce sanity checks
 - -ex: source must be from other side of wall
 - -ex: only allow reply packets
 - encryption/digital signatures for authentication/privacy

Bottom Line

- No magic!
- No revealed wisdom!