
1 of 5

Fishnet Assignment 3: Reliable Transport
Out: Friday, February 8, 2002.
Due: Tuesday, February 26, 2002.
CSE/EE461 Winter 2002; Anderson.

In this assignment, you will work in teams of two to develop a Fishnet node that reliably
transfers files to other nodes. The program you write builds on your solution so far. The
goal of this assignment is for you to understand reliable transport.

START THIS ASSIGNMENT EARLY. Bugs are easy to write and challenging to understand.

1 What You Need To Write
Write a C program called hw3.c that implements a file transfer application on top of a bi-
directional transport protocol, as described below. Continue to bear in mind the
Robustness Principle: “Be conservative in what you send and liberal in what you accept.”
This specification may leave some points ambiguous; do what you think is best as long as
your program can interoperate with the sample solution and other nodes, and document
the design decisions you make.

� Builds on top of functionality from the first two assignments:
�

 Takes three command line arguments as before, joins the Fishnet, performs the
tasks below in any order, and runs until you type “exit”, when libfish.a will end
the program.

�
 Accepts keyboard input commands of the form “send <nnn> <message>”

and implements the Fishnet echo protocol, which is useful for testing.
�

 Maintains an up-to-date routing table via the distance vector protocol and
forwards packets using the routing table.

� Waits to get a line of input from the keyboard of the form “put <nnn>
<filename>”, then reliably transfers the contents of the file across the Fishnet to
the destination node, where it is written to a file. To stress reliability mechanisms, the
Fishnet in which you run will drop a significant proportion of packets. Successful
transfer requires that you implement three pieces of functionality, each of which are
described below: reliability using timers and retransmissions; connection setup and
teardown; and a simple file transfer application. You should use transport packets as
defined in fish.h for all of these tasks.

� Reliability. You will implement a reliable, bi-directional connection with the
FISH_TRANSPORT_PROTOCOL. Reliable transmission should be achieved for
each data packet within a connection, including those with SYN or FIN set (see
below), by acknowledgement and retransmission.

�
 Sequence numbers. Each packet that contains data or has the SYN or FIN flag set

should have a non-zero sequence number. The setup protocol given below allows
any initial sequence number, e.g., one or a random number, to appear in SYN

2 of 5

packets. Afterwards, each packet that is not a retransmission should have its
sequence number incremented. (Don’t worry about sequence number wrapping.)

�
 Sending data. A sender should have only one data packet outstanding at a time

(i.e., stop-and-wait). After the first packet, don’t send a packet with a new
sequence number until the previous one has been acknowledged.

�
 Acknowledgements. Receivers should acknowledge every data packet that is part

of a connection or that establishes a new connection, even if it is out-of-order or a
duplicate. The acknowledgement number should always be the sequence number
of the last in-order packet received.

�
 Retransmission and timers. While sending data, a retransmission timer of

RETRANSMIT_TIMEOUT seconds should be kept for each unacknowledged
packet, and the packet should be re-sent verbatim if the timer fires. If
MAX_RETRANSMIT copies of a packet have been unsuccessfully retransmitted,
then the connection should be aborted by deleting the connection state. If a
connection has seen no activity for IDLE_TIMEOUT seconds, then the
connection should be similarly aborted. (Note that you can cancel timers using
fish_cancelevent.)

�
 Sliding window. The rules described above for stop-and-wait reliability are

equivalent to using a sliding window of 1 packet. However, the
acknowledgement rules are defined in such a way that your sender can support a
larger sliding window of 8 packets (say) without any change in the receiver code.
You may choose to make your sender use a larger sliding window, with or
without the fast retransmit feature, and see how much faster it is. You may also
allow the receiver to buffer a finite range of out-of-order packets.

� Connections. A connection is identified by the four-tuple of source and destination
address plus source and destination port. Your application should be able to maintain
up to MAX_CONNECTIONS simultaneous connections. Both the client (which
initiates a connection) and the server (which accepts a connection) should be
implemented within a single program.

�
 Connection setup. Connection setup involves a three-way handshake. To begin a

connection, the client should send a packet with the SYN flag turned on and wait
for it to be acknowledged; all other packets in this connection should have this
flag turned off. The server, upon receiving a packet with the SYN flag on for a
destination port for which there is an application, should establish the connection
state and reply with a packet that has the SYN flag set and acknowledges the
client’s SYN packet. The client should then acknowledge the server’s SYN
packet. Both SYN packets should establish an initial sequence number. (These
may be different, but should both be greater than zero.)

�
 Connection teardown. To implement connection teardown, the client or server

should send a packet with the FIN flag turned on and wait for it to be
acknowledged. When it later receives a packet with the FIN flag set, it should
acknowledge the packet and wait IDLE_TIMEOUT seconds before clearing the
connection state (in case the acknowledgement is lost and the FIN retransmitted).

3 of 5

Upon receiving a packet with the FIN flag set and the expected sequence number
for an established connection, the client or server should acknowledge the packet
and send FIN if it has no more data to send. After sending FIN, the program
should wait for the packet to be acknowledged before clearing the connection
state.

� File transfer. The file transfer application should read from the local file named in the
put command described above, transfer its contents over the network, and write them
to a local output file. The sender should transmit the null-terminated string “put
<filename>” as the data of the SYN packet. The receiver should open the output
file named by the source node address of the connection, followed by a dash,
followed by the name of the file being transferred, e.g., “23-myfile.txt”. The
remaining packets in the connection should carry the contents of the file in order. The
input and output file are closed when the connection is torn down. The FIN packet
should not include data. (These rules about SYN and FIN packets carrying data are
arbitrary, chosen only because we have a simple implementation in mind.) File
transfer packets should be sent with destination port 20 (FTP Data) and a source port,
1000 or above, chosen by the sender.

�
 Note that file transfer can be a significant security vulnerability, and you should

take the following steps to avoid compromises. Do not send or accept filenames
containing the character ‘/’. Make sure the permissions of the written file do not
allow it to be executed. (A good set of permissions is 0422: user read-write, all
others read-only). Write the file truncating any existing copy, e.g. using the
creat system call. If you cannot open the file for writing, then you should
consider the connection to be closed at the receiver (and the sender will soon time
out and abort its connection).

�
 Your implementation shouldn’t care whether the file being transferred is text or

binary. So, don’t use functions like strcpy to manipulate data read from the
file; use memcpy instead.

� Your program should print the following:
�

 When a transfer is started, print “PUT <filename>\n” at the receiver. (At the
sender, you will see the “put <filename>” command that you typed.) At the
sender and receiver, print “\n<xxx> bytes\n” when the transfer is complete,
showing how much data was transferred. At the sender, you should not print this
message until the receiver has acknowledged the FIN packet. Then, you will
know that the file has been successfully transferred when you see this message
and the number of bytes matches the length of the file.

�
 Print the following character codes using fish_debugchar with debug level
FISH_DEBUG_TRANSPORT when a packet is sent or received:

Event Sent Received

SYN S S

4 of 5

FIN F F

Data packet . ,

Acknowledgement : ;

Retransmission or
duplicate

! *

Out-of-order ?

Connection state deleted x X
�

 Although you may wish to use the default debugging level (FISH_DEBUG_ALL)
while debugging your program, use fish_setdebuglevel to set it to
FISH_DEBUG_TRANSPORT before turning in your program. With debugging
for routing disabled, you can use the “send” command to determine when a route
between the client and server has been established.

� You may find the following system calls and library functions helpful in your
implementation: memset, memcpy, strchr, sprintf, isprint, random, open(2) (do “man
2 open” to read the manpage), creat(2), read(2), write(2), and perror. Feel free to
discuss them on the mailing list.

2 Step-by-Step Development and Test Instructions
Here is a suggested set of steps to develop the required functionality.

0. Start with hw2.c by copying it to the new file hw3.c

1. Run the fishhead with high loss (try “--help” or just “--loss 0.2”) to stress the
reliability mechanisms.

2. Code the “put” command syntax, but rather than sending the file, just send a
series of dummy text packets reliably using acknowledgements and
retransmissions and print the text to the console on the receiver. Rather than
using full connection setup and teardown just yet, let the first received packet start
the connection and the idle timer terminate the connection. Test between two
nodes on your local fishnet.

3. Add connection setup on the sender and receiver, adding the relevant printouts,
and test a dummy transfer. Then implement and test connection teardown. (The
TCP state transition diagram on page 381 of Peterson and Davie may help you
understand how to implement connection setup and teardown.)

4. Add the file transfer code by letting the SYN packet carry the filename, reading
from the input file at the sender and writing to the output file at the receiver,
keeping track of bytes transferred, and printing the remaining messages. In case
your implementation is buggy at first, you may want to test by sending a file you
don’t particularly care about. Test with both text files and binary files (e.g., a
picture or a copy of your executable). You can use the Unix diff command to
verify that the received file is the same as the sent file.

5 of 5

5. If you haven’t done so already, test your program for interoperability with the
class reference solution. Then try joining the class Fishnet and transferring some
files to nodes run by the TAs or your friends.

6. You’re done! Read and do any turnin work now.

3 Turn In and Discussion Questions
Submit your source file(s) and the modified Makefile, if needed, using the turnin
program. Hand in a paper copy of the discussion questions and test cases below as well
as your source code.

1. Join the class Fishnet at jimbo:7777 and use the put command to send a file
to node 1. This file should have your username in its name, it should be at least
2KB, and it should be something you want other people to look at. It will be
posted to a collaborative web site, which will be linked to from the main course
web page.
This transfer is the turnin test case. Save the output and print it for us. (Please
use FISH_DEBUG_TRANSPORT for the debug level, as described above, to
save paper and make the output easier for us to read.)

2. Leave a node running on the class Fishnet, as in the previous two assignments.
You may want to run this node in a directory by itself (with no other files in it) so
you can easily see what has been sent to you.

3. What difference (advantage or disadvantage in terms of reliability) does having a
SYN flag make compared to simply using a sequence number of one to signify
the start of a new connection?

4. What difference (advantage or disadvantage in terms of reliability) does having a
FIN flag make compared to simply not signaling FIN and letting old state be
deleted by the idle timeout?

5. In what ways does the system you have built fall short of perfect reliable file
transfer? You should assume that the data in packets is protected by a 32 bit
checksum while in transit (and this is in fact the case).

