
Fishnet Assignment 2: Distance Vector Routing
Out: Wednesday, Jan 23, 2002.

Due: Thursday, Feb 7, 2002 at 5 p.m.

CSE/EE461 Winter 2002; Anderson.

In this assignment, you will work in teams of two to develop a Fishnet node that forwards echo
request and reply packets across the Fishnet using routing tables that you maintain. The program
you write builds on your solution to the first Fishnet assignment by forwarding packets according
to a routing table instead of randomly. The goal of this assignment is for you to understand
distance vector routing.

1. What You Need To Write
Write a C program called hw2.c that implements the Fishnet echo protocol and a distance vector
routing protocol, as described below. Continue to bear in mind the Robustness Principle: "Be
conservative in what you send and liberal in what you accept." This specification may leave
some points ambiguous; do what you think is best as long as your program can interoperate with
the sample solution and other nodes, and document the design decisions you make.

• Takes three command line arguments and joins the Fishnet described by those arguments.
This is identical to assignment 1.

• Waits to get a line of input from the keyboard of the form "send <nnn>
<message>", then sends an echo request packet across the Fishnet to the destination,
from where an echo reply packet is sent back to and received at the original sender. This
is identical to the first assignment, and the output of your program for sending and
receiving echo packets should also be identical in form to the first assignment.

• Maintains a routing table, which is an array of MAX_ADVERTISEMENTS routing table
entries. You must define the structure of a routing table entry. It should have several
types of information, including a destination address, the best distance to that address, the
preferred neighbor, and the age of the information.

• Performs a periodic update every 10 seconds. (Use the timer interface described in
fish.h.) As part of the periodic update, call

fish_debug(FISH_DEBUG_ROUTING, "Periodic update\n")

to print a debugging message. Then age the information in the routing table and send routing
updates to all neighbors, as described below.

• To age the routing table, you should remove any entries that have not been refreshed (as
described further down) for the past three consecutive timer intervals.

• Then, use the routing_packet structure defined in fish.h to send a routing update to



all neighbors. The value of the packet header’s protocol field should be set to
FISH_PROTOCOL_ROUTING; the destination should be ALL_NEIGHBORS. The
packet should include one advertisement for the address of the local node at a distance
metric of zero, plus one advertisement with address and distance for each entry in the
routing table. (These entries have been learned from neighboring nodes as described
below.) Note that the size of a routing packet is PACKET_HEADER_SIZE +
num_adv*sizeof(struct route_advertisement).

• Receives routing update messages from neighboring nodes and uses them to update and
refresh the contents of the routing table as follows. Routing advertisements carried in the
routing message are processed in turn as described below, where each advertisement is
for a destination D at distance metric C learned from preferred neighbor N.

• Every time a routing table entry is added, changed, or refreshed, its age should be set to
0.

• The distance you record in the routing table should always be one more than the distance
advertised by your neighbor.

• When you receive a route for a new destination at a cost less than INFINITY, add it to
the routing table.

• When you receive an advertisement for a route that is cheaper than the route currently in
the routing table, replace the existing route with the new one.

• When you receive an advertisement for a route from the preferred neighbor and its cost
has not changed, refresh the route by setting its age back to 0. If its cost has changed,
update the routing table entry to reflect that change. If the cost of the route is now
INFINITY, remove the route from the routing table.

• Prints the following messages using fish_debug when changing the contents of the
routing table. The new route (or the route being deleted) is to destination D via preferred
neighbor N at cost C.

• When adding a route to a new destination, print "Route add to D via N cost C".

• When changing a route to a known destination, print "Route change to D via N cost C".

• When refreshing a route, print "Route refresh to D via N cost C".

• When removing a route, print "Route remove to D via N cost C".

• Forwards any packets received from neighboring nodes that are destined for other nodes,
decrementing the TTL as before. Instead of sending the packet to a random neighbor, you
should send it to the preferred neighbor listed for the destination in the routing table. If
there is no route for the destination, print "D unreachable", where D is the
destination.

• As before, your program must perform all tasks in any order and run until you give the



command "exit", when libfish. will end the program.

• You may choose to speed up route convergence by adding triggered updates. Whenever a
received update changes your routing table, immediately send updates to your neighbors.
Try this on the turnin test cases to see the difference.

• You may choose to speed up route convergence by adding the split horizon with poison
reverse heuristic. With this heuristic, you advertise routes back to the neighbor you
learned them from at cost INFINITY, rather than the cost in your routing table. This
requires sending different advertisements to each of your neighbors. You can tell who
your neighbors are by checking your routing table for routes where the preferred
neighbor is the destination. You should continue to advertise yourself at cost 0 to
ALL_NEIGHBORS, so new neighbors can learn about you. Try this on the turnin test
case to see the difference.

1. Step-by-Step Development Instructions
You can go about building your program in any fashion you prefer. Here is a suggested set of
steps to develop the required functionality. We have omitted the steps up through and including
starting the fishhead, which remain as previously.

0. Start with hw1.c by copying it to the new file hw2.c. You may split the program’s
functionality between multiple source files; either use #include to directly include the
other .c files in hw2.c, or modify the Makefile.

1. Leave the program performing random forwarding and add the code for the periodic
routing timer. Look at fish.h to see the timer API calls. When the timer fires, send a
routing update message with one advertisement (for the node itself) to all neighbors and
print the required messages. Test this by running both a two and three node network and
seeing that routing updates are exchanged.

2. Define the structure for a routing table entry and add the routing table. Change the
random forwarding routine to forward using the routing table and print out the
forwarding related messages. Test this so far by running a two-node network. You should
not be able to send any non-routing messages (they should all be dropped because there is
nothing in the routing table).

3. Write the code to add routes learned from advertisements to the routing table and to send
routing updates that encode the information in the table. Test this with a two and three
node network. You should see routes added at each node for the other nodes, and
forwarding should have begun to work.

4. Write the code to handle the remaining routing update cases. Test your program on a two-
node network. Routes should be added, and refreshed too.

5. Write the code to age entries in the routing table and expire them when they get old. Test
this with a two node network by letting routing stabilize and killing one node. The other
node should eventually expire its route to the killed node.



6. At this stage you have a complete program and should try joining the class network and
doing the turnin cases.

1. Turn In and Discussion Questions
To prepare for turnin, you need to join the class network, gather the output of your program
running the test cases below, and answer four discussion questions:

1. Describe distance vector routing in no more than three sentences.

2. Run a three-node network, with each node A, B, and C running in a separate window.
Wait until the routing tables have stabilized and send one packet from A to B. Then kill
node C (with a ^C) and wait for the routing tables to stabilize. Try sending from A to C
and observe the result. Now restart node C, wait for the routing to stabilize, and try
sending again. Capture the entire output of the three sessions using, for example,
script. To deal with the typing input while your program is producing output, you may
want to cut and paste the "send" command.

What happens after the node C fails and why? Describe the general progression of your
output for nodes A and B in no more than three sentences.

3. Run a three-node chain network by starting the fishhead with the argument
"—topology chain" and then starting nodes A, B, and C in that order. Node B should
be in the middle of the chain. Wait until the routing tables have stabilized. Then kill node
C and wait for the routing tables to stabilize. Capture the entire output of the three
sessions using, for example, script.

What happens after the node C fails and why? Describe the general progression of your
output for nodes A and B in no more than three sentences.

4. Question: The implementation we have specified ages routes before sending updates.
Instead we could send updates and then age routes. Which scheme is better and why?
Hint: consider the first test case (with a triangle topology). You may want to try changing
your code to see the effect.

You should turn in one copy per team of electronic and paper material as usual:

1. Join the class Fishnet at jimbo:7777 and try to keep this node running after your
submission. Also, join the class network and send a message to node 1, the bulletin board
node, as in assignment 1.

2. One or more C files containing the source code of your solution, and the Makefile if you
modified it. The main file should be named hw2.c. Submit this electronically using the
turnin program on the Linux servers.

3. One stapled paper writeup with your names and sections that contains:

a. A printout of the source code you submitted electronically.

b. A printout of the output from the test cases described above.



c. Short answers to the discussion questions above.

—END—


