
Page 1 of 7

Fishnet Assignment 1: Random Forwarding
Due: Thursday, Jan 24, 2002 at the beginning of class. Out: Monday, Jan 7, 2002.

CSE/EE461 Winter 2002; Anderson.

In this assignment, you will work in teams of two to develop a single C program that is a
Fishnet node. The node will connect to other Fishnet nodes and allow you to send simple
messages that you type on the keyboard, such as “Hello World”, to other nodes in the
network. The goals of this first assignment are to become familiar with the Fishnet
development environment and to understand packet forwarding.

1 Introduction to the Fishnet
Fishnet is a class-sized network that we will build over the course of the quarter! You
will build a Fishnet node progressively, working in pairs, over a series of four
assignments. Once we are done, nodes from each team will be able to route messages and
transfer files in a shared, secured network.

1.1 Development Environment
We will be developing under Linux and writing C code. Typically, you will go the CSE
Labs, log into a Windows machine, and from there remotely access a Linux server using
teraterm (ssh) or X windows. All programming, compiling and running of the Fishnet
will take place on the Linux machines. Each node of the Fishnet network will run as a
process on a Linux machine. The compiler we will use is gcc, and the debugger we will
use is gdb. You can use any editor you prefer, such as emacs.

1.2 What is a Fishnet?
The term “Fishnet” is somewhat overloaded, and before going further we want to clarify
what it means. First, it is the code that makes up all of the assignments. This is the
Fishnet development environment. Second, it is a running network of many nodes and a
single fishhead (a key component to be described shortly). This is what we most
commonly mean by a Fishnet. Note, however, that there are many potential Fishnets.
You will all start your own, private, Fishnet to develop and test the code required for this
assignment. Each of you will run your own fishhead, and nodes of your network will not
interact with nodes of other students’ networks. There is also The Fishnet, with a capital
“T”. This is the one public, shared Fishnet (a running network) that everyone’s node is
able to join and participate in a collective class network. This is accomplished simply by
pointing your code at a fishhead that we run.

1.3 Fishnet Components
The Fishnet project code, like everything else you need, is available from the course web
site. The package we provide you with contains the following key components:

Page 2 of 7

1.3.1 fishhead
fishhead is a program that manages Fishnet nodes. A network can contain many nodes,
but only one fishhead. The main function of the fishhead is to tell individual nodes who
their neighbors are. It is important to understand that the fishhead manages the network
topology and decides who is connected to whom, not you in your programs. (For the
curious, the nodes of networks you operate are run as separate processes that
communicate with each other using a UDP overlay.)

When you develop a Fishnet node and run it, one of the first things it will do is to join a
Fishnet network by contacting the fishhead. This means that before you start one of your
Fishnet nodes there must be a fishhead process running. You only need to start a fishhead
for your network once, even though the nodes in the network can come and go.

1.3.2 libfish.a
The fish library implements all of the Fishnet functionality that you will need for your
assignments. When you send a message using the fish_sendframe() function, for
example, libfish.a is called to do the work of sending the packet. libfish.a also prints a
large (but controllable) amount of debugging information to the console (stderr) to help
you understand what is going on with your program. The library source code is available
in the fishsrc directory so that you can see how the Fishnet really works and to help with
your debugging, but you MUST NOT change this code at all so that you remain
compatible with other people’s nodes.

1.3.3 fish.h
This is the header file that you should include in your C program to gain access to the
functionality implemented in the fish library. It contains the dozen or so Fishnet API
functions that you can call, as well as the structures that define packet formats, and other
Fishnet constants. You should read the comments in this file, as it contains the definitive
Fishnet API documentation.

2 What You Need To Do
Write a C program in a file called hw1.c that, when run, does the following:

§ Takes three whitespace separated command line arguments: first,a string representing
the location of the fishhead, in the format “hostname:port”; second, the name of the
domain which your node will belong to, which is simply a string and can be anything
for this assignment; third, the address you want for your Fishnet node, which is
simply a small unique number.

§ Joins the Fishnet described by the command line arguments. You will need to use the
fish_joinnetwork() call, and you will need to have started your own fishhead before
running your program. Remember, you choose the address of your node, but the
fishhead decides what other nodes you are connected to, and your neighbors change
as other nodes come and go.

Page 3 of 7

§ Waits to get a line of input from the keyboard using fish_recvhook() and checks to
see if the input is of the form “send <address> <message>”, where <address> is a
number representing the address of the node to send to, and <message> is a string that
may contain spaces and is terminated by the end of the line. You can use the sscanf
code “send %d %a[^\n]” to parse the input. The “%a[^\n]” accepts all characters up
to the end of the line, unlike “%s”, which stops at the first space. Free the string in
which you store the message when you are done with it. You can use the command
“man 3 sscanf” to learn more about this.

§ When a command of this form has been received, your program should send a packet
containing the message to a random neighbor using fish_send(). This requires that
you construct a packet structure (struct packet) and fill in the source address,
destination address, TTL, protocol, and packet contents as appropriate. The value of
the TTL should be the constant MAX_TTL, and the protocol should be
FISH_PROTOCOL_ECHO_REQUEST. These constants are defined in fish.h. The
rest of the program described below will forward the packet through the network to
its destination and cause an acknowledgement packet to be returned to the sending
node.

§ Waits to receive a packet from the network using fish_recvhook(). When a packet is
received, you should deal with it as follows:

§ If the packet’s destination is not your node, you should decrement the TTL
field. If the new value of the TTL is greater than 0, you should forward the
packet to a random neighbor. Otherwise, the packet’s time to live has
expired; don’t do anything more with it.

§ If the packet’s destination is your node and the protocol is
FISH_PROTOCOL_ECHO_REQUEST, you should print “Echo request from
<address>: <message>\n”, where <address> is the source of the packet and
<message> is its data. Then you should make a new packet with the protocol
FISH_PROTOCOL_ECHO_RESPONSE and send it back to the node that
sent you the original packet. The packet should have the original message as
its data.

§ If the packet’s destination is your node and the protocol is
FISH_PROTOCOL_ECHO_RESPONSE, you should print “Echo response
from <address>: <message>\n”.

§ Your program should repeat getting input, sending, receiving, and printing
indefinitely. (When you type the command “exit”, libfish.a will automatically end the
program.) Your program must be capable of sending and receiving in any order; this
will happen without any effort on your part if you are using upcalls in the right way.

§ An important rule of thumb in building network protocols is the Robustness
Principle: “Be conservative in what you send, and liberal in what you receive.” This
helps different implementations of a protocol (e.g., the sample solution, your
program, and your classmates’ programs) to work together reliably. For this
assignment, this principle means you should be careful to send packets that comply
with the protocol we have described, but you should do the best you can with

Page 4 of 7

whatever packets you receive from other nodes. In particular, other nodes shouldn’t
be able to crash your node by sending it bad packets. If your node does crash, it’s
your responsibility to find out what happened and fix it.

3 Step By Step Instructions
You may develop your program in any fashion you prefer. Here is a suggested set of
steps to develop the required functionality.

0. Check that you can get into the CSE Lab and log into a Windows machine. From
there, check that you can remotely access one of the Linux servers (fiji,
tahiti, sumatra, ceylon, blackbox02, blackbox03,
blackbox04, or blackbox05). If you are not a CSE major, you must fill
out a request form in order to gain access and accounts; the form will be available
in class or at the CSE front desk. All of your work will take place on the Linux
servers. The easiest way to work is to use teraterm to ssh to these machines; there
is a shortcut to do this on most desktops. You can also use any X windows
packages that you are familiar with.

1. Download the Fishnet package from the course web pages into your home
directory and unpack it. The easiest way to do this is to run the lynx browser
(lynx http://www.washington.edu/461), follow the Fishnet links, and
download the tarball. Alternatively you could use wget to download the tarball.
To unpack the tarball, use tar with the arguments given on the web page. You
should now have a fishnet directory with files in it. As a general note, you can use
the man command to get a help page for any Unix command or function we ask
you to use that you don’t understand.

2. Read fish.h. The comments in this file tell you what the Fishnet API calls are,
what they do, what arguments they take and return, and so forth. You won’t find
this information anywhere else.

3. Start a fishhead process to manage a Fishnet by running the fishhead program that
is inside the fishnet directory. Type “./fishhead --help” to find out what
command line arguments it accepts. You will need to give it a argument to
indicate which port it should listen on for messages. Pick a number between 1024
and 32K. If the number you choose is the same as someone else’s fishhead will
fail to start. The fishhead program runs indefinitely to keep the Fishnet it is
running up. You should leave it running and create another window in which to
do your development. When you’re done, stop it by typing ^C.

4. Download the sample executable for this assignment from the course web site and
try running it with your local fishhead. You’ll need to run it more than once, in
separate windows, to do anything interesting.

5. Develop your program, which should be contained in a file called hw1.c in the top
level directory created when you unpacked the Fishnet distribution. The fishsrc
directory contains the source code that we have written so that you may see it and
use it for debugging, but you must not change it. We have supplied a Makefile so

Page 5 of 7

that you can type “make hw1” to compile your program. This will invoke the
compiler, gcc, with the right command line arguments.

§ You will find the following C library functions helpful: atoi, printf, sscanf,
strlen, strncpy, and free. Remember than you can type “man
<functionname>” to get help for using these functions.

§ As you write your program, note that our (fairly verbose) sample solution is
about 130 lines. If your program is much longer than this, you are probably
doing something the hard way and should talk to us about it.

6. Test your program by running it and the sample solution to make a network with a
few nodes that are connected to one another. You will need to use different
command line arguments to select different node addresses. You will find it
easiest to bring up a separate window for each node, as well as the window for the
fishhead. If your program works, you should be able to enter text in one window,
see it echoed in another window, and see the response back in the first window.
Unless you’ve disabled them using the fish_setdebuglevel() function, you should
also see libfish debugging messages that show how your packets move through
the network.

7. Iterate on the above two steps until you think you have your solution! Remember
that only feasible way to develop software of any complexity is to find a way to
break the task down into simpler, checkable, subtasks. In this case, you might first
write a program that had a main() function that simply accepts the command line
arguments, prints them out, and exits. When this compiles and runs properly
(experience shows most of you will have found and fixed at least one error
already!) move to the next task. The next task might be joining the network and
sitting in fish_main(). You can use debugging messages to check if this program
has worked, as you will get messages when you have joined. You can quit the
program by typing the command “exit”. Next, you might try for keyboard input,
and print it out but not send a packet yet, and so forth. While this strategy might
seem like overkill at this stage, you should get used to it before attempting the
larger assignments. The beauty of testing subtasks is that the problems are rarely
where you think they are (otherwise you wouldn’t have made the mistake) and
testing is the only way to pin them down. Despite this strategy, more difficult
bugs will require you to use the debugger, gdb.

8. Comment your program if you haven’t already. Good comments don’t belabor the
obvious (e.g., “calling the main loop” near fish_main()). Rather, good comments
tell us how you have arranged your code and assumptions you have make, as well
as anything non-obvious (e.g., “this is the frame receive upcall from fish_main”
near the function you installed using fish_recvhook()). In truth, this first
assignment shouldn’t need many comments, but in later assignments we will need
comments from you to understand your code.

9. Join the class Fishnet! The fishhead you should connect to is at jimbo:7777. You
can see the network topology by opening http://jimbo.cs.washington.edu:7777/ in
your web browser. Try sending some messages to the other nodes you find there
and make sure you can deal with the responses you get.

Page 6 of 7

10. Answer the discussion questions and follow the turn-in instructions below.

4 Discussion questions
To prepare for turnin, you need to gather the output of your program running the test case
below and answer two discussion questions.

1. Run a three node network (using your program only, not the sample solution), with
each node running in a separate window. From one node, send a message to each of
the two other nodes. Capture the entire output of the three sessions using, for
example, the script command. Make sure the debugging level is
FISHNET_DEBUG_ALL (the default) so that we can see what packets are being sent
and received. Mark up the printout to tell us how the output lines correspond to the
send commands.

2. Why do we need the TTL mechanism, given that random forwarding ensures that a
packet sent by one node will eventually reach any other connected node?

3. Packets can bounce around for some time with random forwarding, particularly in
large networks. Your friend suggests a modification: never send a packet back to the
neighbor it just came from. For what kinds of network topologies would this be
helpful, and for what kinds would it be harmful?

5 What To Turn In
For this assignment, as well as for future assignments, you need to turn in electronic and
paper material as follows.

1. Join the class Fishnet using the command “./hw1 jimbo:7777 <domain>
<address>”. Then enter ^D (Ctrl-D) to close standard input, ^Z to suspend the
program, and finally the command “bg” to turn it into a background process.
This will allow your program to keep running even after you log out, so that your
node can interact with other nodes in the network. Your program should still be
running and forwarding packets when we grade the assignment. You may want to
check on it from time to time by using the ps command or by looking at the
Fishnet topology web page at http://jimbo.cs.washington.edu:7777/. If your
program crashes, you will find a core file in your development directory that you
can examine using gdb. You can use the kill command if you need to restart
your node. We will tell you when to kill your program after we are done grading
the assignment.

2. Join the class Fishnet again (using a different address) and send messages to node
1 saying that you and your partner were there. Node 1 will maintain a log of these
messages. You can see the message log by looking at the web page
http://jimbo.cs.washington.edu:8000/.

3. Use the turnin program on the Linux servers to electronically submit one or
more C files containing the source code of your solution. In this case, the main
file should be hw1.c. You must do this before class on the day that it is due. The

Page 7 of 7

code you send should be suitable for us to manipulate automatically for grading
checks. (In particular, it should compile using the makefile we provided.)

4. In class on the due date, hand in one stapled paper write up, with both partners’
names on it, containing:

a. A printout of the source code you submitted electronically.

b. A printout of any output we have asked you to capture. In this case there
are three output files captured with script, one for each of the three
nodes running the test case.

c. Short answers to the discussion questions.

6 Our Grading Philosophy
Our intent is to have you explore networking issues, rather than write a program that
manages to pass a given set of acceptance tests. We will grade you on this material in two
ways. First, we will look at your write up and the C source code. The printout, your
description of what is going on, your answers to the discussion questions, and the design
clarity of your program, give us a very good idea of how well you got the program
working and how well you understand the issues that it explores. Second, we may look at
how your program is behaving in the class Fishnet. Third, we may compile and run
programs that we are unsure of after looking at the source and your printout. We also
may randomly test programs to see that they produce the output that you claim they
produce. When we test, it isn’t our intent to penalize you significantly for small errors in
execution, as opposed to larger errors in understanding of the concepts and design of the
solution, but we will deduct some points for small errors or not following our
instructions. We will also sometimes include optional material in the assignments, and
hope that you choose to explore some of the issues this material raises, but we won’t
grade optional material.

