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• The Transport Layer 

• Focus
– How do we decide when to retransmit?

• Topics
– Estimating RTTs
– Karn/Partridge algorithm
– Jacobson/Karels algorithm

HJI K L M N OQP
RSO T O�U M V W
XSY T Z\[Q] W
^J] OQV L _ [Q] T
`JY L L M [QV
HJ] Y L YQV T O T M [QV
a\_ _ P M N O T M [QV



�

* + ,.- - / 0 1 - 1 1 2 3 4 5 687 9 : ; < = > > 4 ? @ A B �

E # " D �������$�����

• The Transport Layer 

• Focus
– How do we share bandwidth?

• Topics
– Congestion control
– Fairness
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• How fast should the Web server send packets?
• Two big issues to solve!

• Congestion
– sending too fast will cause packets to be lost in the network

• Fairness
– different users should get their fair share of the bandwidth

• Often treated together (e.g. TCP) but needn’t be
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• Buffer intended to absorb bursts when input rate > output
• But if sending rate is persistently > drain rate, queue builds
• Dropped packets represent wasted work; goodput < throughput
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• Each flow from a source to a destination should get an equal share 
of the bottleneck link … depends on paths and other traffic
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• Open versus Closed loop
– Open: reserve allowed traffic with network; avoid congestion
– Closed: use network feedback to adjust sending rate

• Host-based versus Network support
– Who is responsible for adjusting/enforcing allocations?

• Window versus Rate based
– How is allocation expressed? Window and rate are related.

• Internet depends on TCP for bandwidth allocation
– TCP is a host-driven, window-based, closed loop mechanism
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• TCP/Internet provides “best-effort” service
– Implicit network feedback, host controls via window.
– No strong notions of fairness

• A network in which there are QOS (quality of service) guarantees
– Rate-based reservations natural choice for some apps
– But reservations are need a good characterization of traffic
– Network involvement typically needed to provide a guarantee

• Former tends to be simpler to build, latter offers greater service to 
applications but is more complex.
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• Power = throughput / delay

• At low load, throughput goes 
up and delay remains small

• At moderate load, delay is 
increasing (queues) but 
throughput doesn’t grow 
much

• At high load, much loss and 
delay increases greatly due to 
retransmissions
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• First, need to define what is a fair allocation
– Consider n flows, each wants a fraction fi of the bandwidth 

• Min-max fairness:
– First satisfy all flows evenly up to the lowest fi.. Repeat with the 

remaining bandwidth.

• Also proportional fairness
– Depends on path length … 

f1
f2

f3
f4
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• How do we compute the fairness of an allocation?
– If all flows have an equal share at a router it’s “fair”
– But how unfair are unequal allocations?

• Jain’s fairness index:
– For n flows each receiving a fraction fi of the bandwidth

– Fairness =  ( � fi) 
2 / (n x � fi

2)
– Always between 0 and 1, 1 for equal allocations
– If only k out of n flows get bandwidth, drops to k/n
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• Network mechanisms for bandwidth allocation should 
avoid congestion and provide fairness

• Congestion occurs when buffers inside the network fill 
with excess traffic
– Queuing leads to increased latency and eventually to loss

• Fairness means that competing traffic flows gain a “fair 
share” of the available bandwidth
– Min-max fairness is one definition of “fair share”


