
�

�����������
	�����������������������

������ �!�"  �$#
%'& & ()� � � " ( �

David Wetherall
djw@cs.washington.edu

* + ,.- - / 0 1 - 1 1 2 3 4 5 687 9 : ; < = > > 4 ? @ A B C

� ��D �FE " G �

• The Transport Layer 

• Focus
– How do we decide when to retransmit?

• Topics
– Estimating RTTs
– Karn/Partridge algorithm
– Jacobson/Karels algorithm

HJI K L M N OQP
RSO T O�U M V W
XSY T Z\[Q] W
^J] OQV L _ [Q] T
`JY L L M [QV
HJ] Y L YQV T O T M [QV
a\_ _ P M N O T M [QV



�

* + ,.- - / 0 1 - 1 1 2 3 4 5 687 9 : ; < = > > 4 ? @ A B �

E # " D �������$�����

• The Transport Layer 

• Focus
– How do we share bandwidth?

• Topics
– Congestion control
– Fairness

HJI K L M N OQP
RSO T O�U M V W
XSY T Z\[Q] W
^J] OQV L _ [Q] T
`JY L L M [QV
HJ] Y L YQV T O T M [QV
a\_ _ P M N O T M [QV

* + ,.- - / 0 1 - 1 1 2 3 4 5 687 9 : ; < = > > 4 ? @ A B �

������ �!�"  �$#
%'& & ()� � � " ( �

• How fast should the Web server send packets?
• Two big issues to solve!

• Congestion
– sending too fast will cause packets to be lost in the network

• Fairness
– different users should get their fair share of the bandwidth

• Often treated together (e.g. TCP) but needn’t be



�

* + ,.- - / 0 1 - 1 1 2 3 4 5 687 9 : ; < = > > 4

• Buffer intended to absorb bursts when input rate > output
• But if sending rate is persistently > drain rate, queue builds
• Dropped packets represent wasted work; goodput < throughput

��� � � � � � � � 	 �
 � �  ��� � ����
�� � � ���	 � � � �

� 	 � � � ��

��� � �  !"

# $ $ % &(' ) *
+ , ,.-

/ 0 1 2�3 4 5(6
7 8 9 : ; 9 7

��( �=< � D � " ( �

>@?�ACB�D(E FHG�I J�K�K(D�GML(D�I D

* + ,.- - / 0 1 - 1 1 2 3 4 5 687 9 : ; < = > > 4

N O P Q R S

T O P S U RV

T O P S U RW

T O P S U RX

N O P Q R S
N O P Q R S

Y R Z Q [ \ ] Q [ O \V

Y R Z Q [ \ ] Q [ O \W

^ ��" � � � D�D

• Each flow from a source to a destination should get an equal share 
of the bottleneck link … depends on paths and other traffic



�

* + ,.- - / 0 1 - 1 1 2 3 4 5 687 9 : ; < = > > 4 ? @ A B �

������ �!�"  �$#
%'& & ()� � � " ( � %���� �S( � � #�� D

• Open versus Closed loop
– Open: reserve allowed traffic with network; avoid congestion
– Closed: use network feedback to adjust sending rate

• Host-based versus Network support
– Who is responsible for adjusting/enforcing allocations?

• Window versus Rate based
– How is allocation expressed? Window and rate are related.

• Internet depends on TCP for bandwidth allocation
– TCP is a host-driven, window-based, closed loop mechanism

* + ,.- - / 0 1 - 1 1 2 3 4 5 687 9 : ; < = > > 4 ? @ A B �

� � D�" < � ��#�( " � � D

• TCP/Internet provides “best-effort” service
– Implicit network feedback, host controls via window.
– No strong notions of fairness

• A network in which there are QOS (quality of service) guarantees
– Rate-based reservations natural choice for some apps
– But reservations are need a good characterization of traffic
– Network involvement typically needed to provide a guarantee

• Former tends to be simpler to build, latter offers greater service to 
applications but is more complex.



�

* + ,.- - / 0 1 - 1 1 2 3 4 5 687 9 : ; < = > > 4

• Power = throughput / delay

• At low load, throughput goes 
up and delay remains small

• At moderate load, delay is 
increasing (queues) but 
throughput doesn’t grow 
much

• At high load, much loss and 
delay increases greatly due to 
retransmissions

� 	 � � � 	 � ��(� � � ��� �
�� �
�	

� �
	�
� �
� ��

��� � & � � � " �=< ��( �=< � D � " ( � ��( � ����( &

* + ,.- - / 0 1 - 1 1 2 3 4 5 687 9 : ; < = > > 4 ? @ A B @ �

��� � & � � � " �=< ^ � " � � � D D

• First, need to define what is a fair allocation
– Consider n flows, each wants a fraction fi of the bandwidth 

• Min-max fairness:
– First satisfy all flows evenly up to the lowest fi.. Repeat with the 

remaining bandwidth.

• Also proportional fairness
– Depends on path length … 

f1
f2

f3
f4



�

* + ,.- - / 0 1 - 1 1 2 3 4 5 687 9 : ; < = > > 4 ? @ A B @ @

� ��" ��� D ^���" � � � D D�� �� ���

• How do we compute the fairness of an allocation?
– If all flows have an equal share at a router it’s “fair”
– But how unfair are unequal allocations?

• Jain’s fairness index:
– For n flows each receiving a fraction fi of the bandwidth

– Fairness =  ( � fi) 
2 / (n x � fi

2)
– Always between 0 and 1, 1 for equal allocations
– If only k out of n flows get bandwidth, drops to k/n

	 
 �� � � � � � � � � � � � ��� � � � � � � � � � �  ! � "

#%$'&)(+*+,.-/$10'243

• Network mechanisms for bandwidth allocation should 
avoid congestion and provide fairness

• Congestion occurs when buffers inside the network fill 
with excess traffic
– Queuing leads to increased latency and eventually to loss

• Fairness means that competing traffic flows gain a “fair 
share” of the available bandwidth
– Min-max fairness is one definition of “fair share”


