CSE/EE 461 - Lecture 15 Retransmission and Timers

David Wetherall djw@cs.washington.edu

Last Time ...

- More on the Transport Layer
- Focus
 - How do we manage connections?
- Topics
 - Three-Way Handshake
 - Close and TIME_WAIT

Application

Presentation

Session Transport

Network

Data Link

Physical

djw // CSE/EE 461, Winter 2001

This Lecture

- More on the Transport Layer
- Focus
 - How do we decide when to retransmit?
- Topics
 - RTT estimation
 - Karn/Partridge algorithm
 - Jacobson/Karels algorithm

Application

Presentation

Session

Transport

Network

Data Link

Physical

djw // CSE/EE 461, Winter 2001

L15.3

Deciding When to Retransmit

- How do you know when a packet has been lost?
 - Ultimately sender uses timers to decide when to retransmit
- But how long should the timer be?
 - Too long: inefficient (large delays, poor use of bandwidth)
 - Too short: may retransmit unnecessarily (causing extra traffic)
 - A good retransmission timer is important for good performance
- Right timer is based on the round trip time (RTT)
 - Which varies greatly in the wide area (path length and queuing)

djw // CSE/EE 461, Winter 2001

A Simple Network Model

- Buffers at routers used to absorb bursts when input rate > output
- Loss (drops) occur when sending rate is persistently > drain rate

Chapter 6, Figure 1 djw // CSE/EE 461, Winter 2001

Effects of Early Retransmissions

djw // CSE Trace data of the start of a TCP conversation between two Sun 3/50s running Sun OS 3.5 (the 4.3BSD TCP). The two Suns were on different Ethernets connected by IP gateways

Congestion Collapse

- In the limit, early retransmissions lead to <u>congestion</u> <u>collapse</u>
 - Sending more packets into the network when it is overloaded exacerbates the problem of congestion
 - Network stays busy but very little useful work is being done
- This happened in real life ~1987
 - Led to Van Jacobson's TCP algorithms, which form the basis of congestion control in the Internet today

[See "Congestion Avoidance and Control", SIGCOMM'88]

djw // CSE/EE 461, Winter 2001

L15.7

Estimating RTTs

- Idea: Adapt based on recent past measurements
- Simple algorithm:
 - For each packet, note time sent and time ack received
 - Compute RTT samples and average recent samples for timeout
 - EstimatedRTT = α x EstimatedRTT + (1α) x SampleRTT
 - This is an exponentially-weighted moving average (low pass filter) that smoothes the samples. Typically, $\alpha = 0.8$ to 0.9.
 - Set timeout to small multiple (2) of the estimate

djw // CSE/EE 461, Winter 2001

Trace data showing per-packet round trip time on a well-behaved Arpanet connection.

The x-axis is the packet number (packets were numbered sequentially, starting with one) and the y-axis is the clapsed time from the send of the packet to the sender's receipt of djw // CSE/EE 46 its ack. During this portion of the trace, no packets were dropped or retransmitted.

The packets are indicated by a dot. A dashed line connects them to make the sequence

L15.9

Karn/Partridge Algorithm

• Problem: RTT for retransmitted packets ambiguous

 Solution: Don't measure RTT for retransmitted packets and do not relax backed of timeout until valid RTT measurements

djw // CSE/EE 461, Winter 2001

Jacobson/Karels Algorithm

- Problem:
 - Variance in RTTs gets large as network gets loaded
 - So an average RTT isn't a good predictor when we need it most
- Solution: Track variance too.
 - Difference = SampleRTT EstimatedRTT
 - EstimatedRTT = EstimatedRTT + $(\delta x \text{ Difference})$
 - Deviation = Deviation + δ (| Difference | Deviation)
 - Timeout = μ x EstimatedRTT + ϕ x Deviation
 - In practice, $\delta = 1/8$, $\mu = 1$ and $\phi = 4$

djw // CSE/EE 461, Winter 2001

L15.11

Estimate with Mean + Variance

Same data as above but the solid line shows a retransmit timer computed according to the algorithm in appendix A.

djw // CSE/EE

Figure 6: Performance of a Mean+Variance retransmit timer

Key Concepts

- A good retransmit timer is important for good performance
 - Too long leads to poor performance
 - Too short leads to wasted bandwidth
- An estimated timeout must adapt to Internet queuing
 - High variance at high load

djw // CSE/EE 461, Winter 2001