
�

�����������
	����������������������	

�������������� ����!

David Wetherall
djw@cs.washington.edu

" # $&% % ' () %)) * + , - .0/ 1 2 3 4 5 6 6 , 7 8 9 : ;

��<�!��>=� ?@�

• We began on the Transport layer

• Focus
– How do we send information reliably?

• Topics
– ARQ and sliding windows ACB D E F G HJIK H L H�M F N O

PRQ L SUTJV O
W V HJN E X TJV L
YCQ E E F TJN
ACV Q E Q N L H L F TJN
Z X X I F G H L F TJN

�

" # $&% % ' () %)) * + , - .0/ 1 2 3 4 5 6 6 , 7 8 9 : �

=��� ! = ?@�

• More on the Transport Layer

• Focus
– How do we connect processes?

• Topics
– Naming processes
– Connection setup / teardown
– Flow control

ACB D E F G HJIK H L H�M F N O
PRQ L SUTJV O
W V HJN E X TJV L
YCQ E E F TJN
ACV Q E Q N L H L F TJN
Z X X I F G H L F TJN

" # $&% % ' () %)) * + , - .0/ 1 2 3 4 5 6 6 , 7 8 9 : 9

� <�?� ��������� � ��!�!���! ����� �
	� � ��!

• Process here is an abstract term for your Web browser
(HTTP), Email servers (SMTP), hostname translation
(DNS), RealAudio player (RTSP), etc.

• How do we identify for remote communication?
– Process id or memory address are OS-specific and transient

• So TCP and UDP use Ports
– 16-bit integers representing mailboxes that processes “rent”
– Identify process uniquely as (IP address, protocol, port)

�

" # $&% % ' () %)) * + , - .0/ 1 2 3 4 5 6 6 , 7 8 9 : �

�� ���� ��� � ���0� � ��?���� ��!

• We still have the problem of allocating port numbers
– What port should a Web server use on host X?
– To what port should you send to contact that Web server?

• Servers typically bind to “well-known” port numbers
– e.g., HTTP 80, SMTP 25, DNS 53, … look in /etc/services
– Ports below 1024 reserved for “well-known” services

• Clients use OS-assigned temporary (ephemeral) ports
– Above 1024, recycled by OS when client finished

" # $&% % ' () %)) * + , - .0/ 1 2 3 4 5 6 6 , 7 8 9 : �

�	�
 �� � � ��� � �� � �

��� �
 � � � � � � � � � �

�	� � �

� � � �

! !�� �#" <�� <�� �R<�? ����� � � � �%$'& ! " �)(

• Provides message delivery between processes
– Source port filled in by OS as message is sent
– Destination port identifies UDP delivery queue at endpoint

�

" # $&% % ' () %)) * + , - .0/ 1 2 3 4 5 6 6 , 7 8 9 : �

� � � � � � � � � 	

� � 	 � �

� � � � � � � � � 	

� � 	 � �

� � � � � � � � � 	

� � 	 � �

� � � � � � � � � � � �

��� � � �

��� � � � � �
��� � � � �

� � ��� !

! " � " � $ 	 � �#"

$�� � % � &
' � � % (� �)

" # $&% % ' () %)) * + , - .0/ 1 2 3 4 5 6 6 , 7 8 9 : *

! " � � ��������!���?

• UDP includes optional protection against errors
– Checksum intended as an end-to-end check on delivery
– So it covers data, UDP header, and IP pseudoheader

�	�
 �� � � ��� � �� � �

��� �
 � � � � � � � � � �

�	� � �

� � � �

�

" # $&% % ' () %)) * + , - .0/ 1 2 3 4 5 6 6 , 7 8 9 : �

= ��<���! ?� !�! ���@����� �����%$�������� ��� �%$'& = � �)(

• Reliable bi-directional bytestream between processes
– Message boundaries are not preserved

• Connections
– Conversation between endpoints with beginning and end

• Flow control (later)
– Prevents sender from over-running receiver buffers

• Congestion control (later)
– Prevents sender from over-running network buffers

" # $&% % ' () %)) * + , - .0/ 1 2 3 4 5 6 6 , 7 8 9 : 8 �

= � � " � $ 	 � �#"

��� � � � � 	
 � � �� � � � � � �

��� �
 �
� �
 � �

� ���

� � � �� � � � � �

� � � ��� �
 � � � ��� �
 � � � ��� �

� � 	 � � ���
 � � � ��� �
 �

��� � � � � 	
 � � �� � � � � � �

! � 	 �
� �
 � �

� ���

! � � � � " �#� � � � � �

$

% %

�

" # $&% % ' () %)) * + , - .0/ 1 2 3 4 5 6 6 , 7 8 9 : 8 8

��� � � � � ��	
 � � � � � � �
� � � �

� � � � � � � �

� � � � � � � � � � � � � �

� � � � � ��� � � � ! �
" � ! � � �
�
 � � � � � � � $%� � � � &

� � ' � � � � � (� �
� � � � & � � � ! ��� � �

�*),+ � + - . +

= � �0/ ��<21 � �43���� ?@<��

• Ports plus IP addresses identify a connection

" # $&% % ' () %)) * + , - .0/ 1 2 3 4 5 6 6 , 7 8 9 : 8 ;

5�6 7 8 9 : ;�< = > ? 8 > @ A B C
D > 7 >

E F B G H ; I J

K ? G L 9 ? 7 D ; 7 L 9 ? 7

M N ? O B :�P Q A > R ;
S ? R L 7 ?
T N = B ? 7 8 ; B N U%8 : N 9 V

K B W I B : G B X I J
T G H : 9 V A B N R JYB : 7

P*Z,[P [\] [

= � �0/ ��<21 � �43���� ?@<��

• Sequence, Ack numbers used for the sliding window
– Congestion control works by controlling the window size

�

" # $&% % ' () %)) * + , - .0/ 1 2 3 4 5 6 6 , 7 8 9 : 8 �

��� � � � � ��	
 � � � � � � �

� � � �

� � � � � � � �

� � � � � � � � � � � � � �

� � � � � ��� � � � ! �

" � ! � � �

�
 � � � � � � � $%� � � � &

� � ' � � � � � (� �

� � � � & � � � ! �)� � �

�+*-, � , . / ,

= � �0/ ��<21 � �43���� ?@<��

• Flags may be URG, ACK, PSH, RST, SYN, FIN

" # $&% % ' () %)) * + , - .0/ 1 2 3 4 5 6 6 , 7 8 9 : 8 9

��� � � � � ��	
 � � � � � � �

� � � �

� � � � � � � �

� � � � � � � � � � � � � �

� � � � � ���0� � � ! �

" � ! � � �

�
 � � � � � � � $%� � � � &

� � ' � � � � � (� �

� � � � & � � � ! �)� � �

�+*1, � , . / ,

= � �0/ ��<21 � �43���� ?@<��

• Advertised window is used for flow control

�

" # $&% % ' () %)) * + , - .0/ 1 2 3 4 5 6 6 , 7 8 9 : 8 �

�>� ��� ��= � �0/ ��<21 � � 3� � $ 1 !

• Header length allows for variable length TCP header
with options for extensions such as timestamps,
selective acknowledgements, etc.

• Checksum is analogous to that of UDP
• Urgent pointer/data not used in practice
• Very few bits not assigned …

" # $&% % ' () %)) * + , - .0/ 1 2 3 4 5 6 6 , 7 8 9 : 8 �

�������������� ��� � ! � <)� $! � ?@� ���

• Both sender and receiver must be ready before we start
to transfer the data
– Sender and receiver need to agree on a set of parameters
– e.g., the Maximum Segment Size (MSS)

• This is signaling
– It sets up state at the endpoints
– Compare to “dialing” in the telephone network

• In TCP a Three-Way Handshake is used

�

� � ��� � � � � � � � 	
 � � �� � � � � � � � � � � � � � �

�����! " $#!%'&)(+*,&.-$/.01�$&.21

• Opens both directions for transfer3�4 � 5 6 �87 � � � 5 4 5 7 � % �9 4 & 5 � % � : ��� � � 5 6 �87 � � � 5 4 5 7 � % �9 � � � 6 � � :;�< =?> ;?@ A B @ C D @ = B E"F?G

H I�JLKNM O PRQ HTS U V
S W X S J V Y[Z \ Q

]_^�` a]�b c d e f g h i j k h d l m?npopq
r s t u v w�x y z { | y u } ~��8�!�

�_�_��� �

� � ��� � � � � � � � 	
 � � �� � � � � � � � � � � � � � �

����� �� ����� .-1�p0

• We could abbreviate this setup, but it was chosen to be
robust, especially against delayed duplicates
– Three-way handshake from Tomlinson 1975

• Choice of changing initial sequence numbers (ISNs)
minimizes the chance of hosts that crash getting
confused by a previous incarnation of a connection

• But with random ISN it actually proves that two hosts
can communicate
– Weak form of authentication

���

� � ��� � � � � � � � 	
 � � �� � � � � � � � � � � � � � �

� � � � � �

� � � � � 	
�
 	 � � � � �
 	 � � � 	 �

� � � � � � � � � � �
� � � � � � �� � �
� � � � � � � �� � � � � 	 �

� � � � � �� � �
� � 	 � �� � � � �
� � 	 � �� � � � �

� � � � � � � � � � � � � � � �

� � � � � �
 	�
 	 � �
 	�� � � ��
 	�� � � � � � � �
�
 	 � �
 	�� � � �

� � �
� � � � � � � � 	

� � 	 � � � �� � � � � � � � 	
� � 	 � � � � ! " #
$ % & ' ! " � � (� �) � � * � � � � � �� � + (� � � � � * � � � (� �� � 	 � � � � � � �

� � �
� � �
� � � � � � � � 	

� � � � �

� � � � � �

� , � � � � � � � � � �
 	

�.�.- � �p&1�p ���!&.-$00/ �1/ � -$0

� � ��� � � � � � � � 	
 � � �� � � � � � � � � � � � � 2 3

465.&7/ -08:9;/ �L� � �p&1�p "0

3�4 � 5 6 �87 � � � 5 4 5 7 � % �9 4 & 5 � % � : ��� � � 5 6 �87 � � � 5 4 5 7 � % �9 � � � 6 � � :;�< =?> ;?@ A B @ C D @ = B E"F?G

H I�JLKNM O PRQ HTS U V
S W X S J V Y[Z \ Q

]_^�` a]�b c d e f g h i j k h d l m?npopq
r s t u v w�x y z { | y u } ~��8�!�

�_�_��� �

<>= ?A@CBED
?AF1DHGHIKJCLNM

?AF1DHGA?CBCDE@

BH?A@AO1PE<>= ?CQ1BCM

BH?A@AO1PE<>= ?CQ1BCM

� �

� � ��� � � � � � � � 	
 � � �� � � � � � � � � � � � � 2 �

� � -�-$ � �1/ � - �. "&��!/ � 9 -

• Orderly release by sender and receiver when done
– Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• TCP provides a “symmetric” close
– both sides shutdown independently

� � ��� � � � � � � � 	
 � � �� � � � � � � � � � � � � 2 2

�.�.- � � -.-$ � �1/ � - �. "&��!/ � 9�-

� � '�� � � 6 � � � � '�' � � �#� � �

� � =

���	�

r
��
 � �

�H= DHG�� ON= @ GE�
JN<�� ?CB>G�� ON= @
<�OK?A@ G>OKJ��

�H= DHG�� ON= @ G��
@K= � B>G�� O1= @

JN<�� ?CBEMJN<�� ?CBEM
�

���

� � ��� � � � � � � � 	
 � � �� � � � � � � � � � � � � 2 �

���$ ����������% 4�� � � �p&1�p

• We wait 2MSL (two times the maximum segment
lifetime of 60 seconds) before completing the close

• Why?

• ACK might have been lost and so FIN will be resent
• Could interfere with a subsequent connection

� � ��� � � � � � � � 	
 � � �� � � � � � � � � � � � � 2 �

	� 1(� � - � �
1�p0

• We use ports to name processes in TCP/UDP
– “Well-known” ports are used for popular services

• Connection setup and teardown complicated by the
effects of the network on messages
– TCP uses a three-way handshake to set up a connection
– TCP uses a symmetric disconnect

