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• We began on the Transport layer 

• Focus
– How do we send information reliably?

• Topics
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• More on the Transport Layer 

• Focus
– How do we connect processes?

• Topics
– Naming processes
– Connection setup / teardown
– Flow control
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• Process here is an abstract term for your Web browser 
(HTTP), Email servers (SMTP), hostname translation 
(DNS), RealAudio player (RTSP), etc.

• How do we identify for remote communication?
– Process id or memory address are OS-specific and transient 

• So TCP and UDP use Ports
– 16-bit integers representing mailboxes that processes “rent”
– Identify process uniquely as (IP address, protocol, port)
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• We still have the problem of allocating port numbers
– What port should a Web server use on host X?
– To what port should you send to contact that Web server?

• Servers typically bind to “well-known” port numbers
– e.g., HTTP 80, SMTP 25, DNS 53, … look in /etc/services
– Ports below 1024 reserved for “well-known” services

• Clients use OS-assigned temporary (ephemeral) ports
– Above 1024, recycled by OS when client finished
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• Provides message delivery between processes
– Source port filled in by OS as message is sent
– Destination port identifies UDP delivery queue at endpoint
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• UDP includes optional protection against errors
– Checksum intended as an end-to-end check on delivery
– So it covers data, UDP header, and IP pseudoheader
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• Reliable bi-directional bytestream between processes
– Message boundaries are not preserved

• Connections
– Conversation between endpoints with beginning and end

• Flow control (later)
– Prevents sender from over-running receiver buffers

• Congestion control (later)
– Prevents sender from over-running network buffers
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• Ports plus IP addresses identify a connection
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• Sequence, Ack numbers used for the sliding window
– Congestion control works by controlling the window size
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• Flags may be URG, ACK, PSH, RST, SYN, FIN
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• Advertised window is used for flow control
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• Header length allows for variable length TCP header 
with options for extensions such as timestamps, 
selective acknowledgements, etc.

• Checksum is analogous to that of UDP
• Urgent pointer/data not used in practice
• Very few bits not assigned …
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• Both sender and receiver must be ready before we start 
to transfer the data
– Sender and receiver need to agree on a set of parameters
– e.g., the Maximum Segment Size (MSS)

• This is signaling
– It sets up state at the endpoints
– Compare to “dialing” in the telephone network

• In TCP a Three-Way Handshake is used
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• We could abbreviate this setup, but it was chosen to be 
robust, especially against delayed duplicates
– Three-way handshake from Tomlinson 1975

• Choice of changing initial sequence numbers (ISNs) 
minimizes the chance of hosts that crash getting 
confused by a previous incarnation of a connection

• But with random ISN it actually proves that two hosts 
can communicate
– Weak form of authentication
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• Orderly release by sender and receiver when done
– Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• TCP provides a “symmetric” close
– both sides shutdown independently
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• We wait 2MSL (two times the maximum segment 
lifetime of 60 seconds) before completing the close

• Why?

• ACK might have been lost and so FIN will be resent
• Could interfere with a subsequent connection
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• We use ports to name processes in TCP/UDP
– “Well-known” ports are used for popular services

• Connection setup and teardown complicated by the 
effects of the network on messages
– TCP uses a three-way handshake to set up a connection
– TCP uses a symmetric disconnect


