CSE/EE 461 - Lecture 13 Sliding Windows and ARQ

David Wetherall djw@cs.washington.edu

Last Time

- We finished up the Network layer
 - Internetworks (IP)
 - Routing (DV/RIP, LS/OSPF)
 - Scalable addressing/routing (BGP, CIDR)
- It was all about routing: how to provide end-to-end delivery of packets.

Application Presentation

Session

Transport

Network

Data Link Physical

djw // CSE/EE 461, Winter 2001

This Time

- We begin on the Transport layer
- Focus
 - How do we send information <u>reliably</u>?
- Topics
 - The Transport layer
 - Acknowledgements and retransmissions (ARQ)
 - Sliding windows

Application

Presentation

Session

Transport

Network

Data Link

Physical

djw // CSE/EE 461, Winter 2001

L13.3

The Transport Layer

- Builds on the services of the Network layer
- Communication between processes running on hosts
 - Naming/Addressing
- Stronger guarantees of message delivery
 - Reliability

djw // CSE/EE 461, Winter 2001

Example - Common Properties

TCP

- Guaranteed delivery
- In-order delivery
- Single delivery
- Arbitrarily long messages Limited size packets
- Synchronization
- Flow control
- Multiple processes

IP

- Lost packets
- Reordered packets
- Duplicate packets

djw // CSE/EE 461, Winter 2001

L13.5

Internet Transport Protocols

- UDP
 - Datagram abstraction between processes
 - With error detection
- TCP
 - Bytestream abstraction between processes
 - With reliability
 - Plus congestion control (later!)

djw // CSE/EE 461, Winter 2001

Automatic Repeat Request (ARQ)

- Packets can be corrupted or lost. How do we add reliability?
- Acknowledgments (ACKs) and retransmissions after a timeout
- ARQ is generic name for protocols based on this strategy

djw // CSE/EE 461, Winter 2001

L13.7

The Need for Sequence Numbers

- In the case of ACK loss (or poor choice of timeout) the receiver can't distinguish this message from the next
 - Need to understand how many packets can be outstanding and number the packets; here, a single bit will do

djw // CSE/EE 461, Winter 2001

Stop-and-Wait

- Only one outstanding packet at a time
- Also called alternating bit protocol

djw // CSE/EE 461, Winter 2001

L13.9

Limitation of Stop-and-Wait

- Lousy performance if wire time << prop. delay
 - How bad? You do the math
- Want to utilize all available bandwidth
 - Need to keep more data "in flight"
 - How much? Remember the bandwidth-delay product?
- Leads to Sliding Window Protocol

djw // CSE/EE 461, Winter 2001

Sliding Window - Sender

- Window bounds outstanding data
 - Implies need for buffering at sender
- "Last" ACK applies to in-order data
- Sender maintains timers too
 - Go-Back-N: one timer, send all unacknowledged on timeout
 - Selective Repeat: timer per packet, resend as needed

djw // CSE/EE 461, Winter 2001

L13.11

Sliding Window - Timeline

djw // CSE/EE 461, Winter 2001

Sliding Window - Receiver

- Receiver buffers too:
 - data may arrive out-of-order
 - or faster than can be consumed (flow control)
- Receiver ACK choices:
 - Individual, Cumulative (TCP), Selective (newer TCP), Negative

djw // CSE/EE 461, Winter 2001

L13.13

Sliding Window Functions

- Sliding window is a mechanism
- It supports multiple functions:
- Reliable delivery
- In-order delivery
- Flow control

djw // CSE/EE 461, Winter 2001

Key Concepts

- Transport layer allows processes to communicate with stronger guarantees, e.g., reliability
- Basic reliability is provided by ARQ mechanisms
 - Stop-and-Wait through Sliding Window plus retransmissions

djw // CSE/EE 461, Winter 2001

L13.15

This Lecture

Application

Presentation

Session

Transport

Network Data Link

Physical

djw // CSE/EE 461, Winter 2001

