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Error Detection and Correction
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Last Time

» Different media have different properties that affect
higher layer protocols

» To send messages we must solve the problems of clock
recovery and framing
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This Lecture

1. Latency. How long does it take to
send messages across a link?

Application
Presentation

2. Error detection and correction. How
do we detect and correct when
messages are garbled during
transmission?

Session
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1. Message Latency

How long does it take to send a message?
“bit”
. Delay D, Rate R .

Two terms:
- Propagation delay = distance / speed of light in media
- Transmission delay = message (bits) / rate (bps)
In effect, slow links stretch bits out in time/space

Later we will see queuing delay ...
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One-way Latency Examples

 Either a slow link or long wire makes for large latency

 Dialup with a modem:
- D =10ms (say), R = 56Kbps, M = 1000 bytes
- Latency = 10ms + (1024 x 8)/(56 x 1024) sec = 153ms!

» Cross-country with T3 line:
- D =50ms, R = 45Mbps, M = 1000 bytes
- Latency = 50ms + (1024 x 8) / (45 x 1000000) sec = 50ms!
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Terminology

» Latency is typically the one way delay over a link
- But latency and delay are generic terms

» The round trip time (RTT) is twice the one way delay
- Measure of how long to signal and get a response

« Animportant metric is the bandwidth-delay product
- Measure of how much data can be in-flight at a time
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2. Error Detection/Correction

» Noise can flip some of the bits we receive
- We must be able to detect when this occurs

» Basic approach: add redundant data
- Error detection codes allow errors to be recognized
- Error correction codes allow some errors to be repaired too
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Motivating Example

Let’s just send two copies. Differences imply errors.

Question: Can we do any better?
- With less overhead
- Catch more kinds of errors

Answer: Yes - stronger protection with fewer bits

- But we can’t catch all inadvertent errors, nor malicious ones
We will look at basic block codes

- K bits in, N bits out is a (N,K) code

- Simple, memoryless mapping
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Detection versus Correction

» Two strategies to correct errors:
- Error correcting codes and retransmissions (ARQ)

e Question: Which should we choose?
» Answer: Depends on errors and cost of recovery!
» Example: Message with 1000 bits, Prob(bit error) 0.001

- If random errors, most messages likely to have an error
- If bursts of 1000 errors typical, only 1 or 2 per 1000 messages

» Satellites, real-time media tend to use error correction
- Called Forward Error Correction (FEC) in some contexts

» Retransmissions typically at the frame/packet level

djw /f CSE/EE 461, Winter 2001 L4.9

The Hamming Distance

« To detect/correct bit errors, errors must not turn one
valid codeword into another valid codeword
« Hamming distance is the number of bit differences
- E.g, code 000 for 0, 111 for 1, Hamming distance is 3
- This is the number of errors needed to turn one into the other
- Hamming distance of the entire code is minimum of pairs
» For code with distance d+1:
- d errors can be detected, e.g, 001, 010, 110, 101, 011
» For code with distance 2d+1:
- d errors can be corrected, e.g., 001 > 000 iff one error
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Parity

 Start with n bits and add another so that the total
number of 1s is even (even parity)
- e.g. 0110010 - 01100101
- Easy to compute as XOR of all input bits

¢ Will detect an odd number of bit errors
- But not an even number

» Does not correct any errors
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2D Parity
» Add parity row/column to array of
bits l
0101001 1
. 1101001 0
o Detects all 1, g, 3 bit errors, and 1011110 1
many errors with >3 bits. 0001110 1
« Corrects all 1 bit errors 0110100 1
1011111 0
— 1111011 0 <
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Checksums

Used in Internet protocols (IP, ICMP, TCP, UDP)
Basic Idea: Add up the data and send it along with sum

Algorithm:

- checksum is the 1s complement of the 1s complement sum of
the data interpreted 16 bits at a time (for 16-bit TCP/UDP
checksum)

1s complement: flip all bits to make number negative
- Consequence: adding requires carryout to be added back
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Checksum Example

» Message is e3 4f 23 96 44 27 99 {3

» 2s complement sum is 1e4ff

» S0 1s complement sum is €500 (add back carry)
» So checksum is 1aff (flip all bits)

» Advantages: fast to compute; incremental
» Disadvantage: error detection isn’t strong
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CRCs (Cyclic Redundancy Check)

» Stronger protection than checksums
- Used widely in practice, e.g., Ethernet CRC-32
- Easily implemented in hardware (XORs and shifts)

» Algorithm: Given n bits of data, generate a k bit check
sequence that gives a combined n + k bits that are
divisible by a pre-defined number

» Based on mathematics of finite fields
- “numbers” correspond to polynomials, use modulo arithmetic
- e.g, interpret 10011010 as X7 + x* + x3 + X'
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CRC Example

» How do we generate the check sequence?
- Have our message, e.g., 10011010 (m=8)
- Have the CRC as a divisor polynomial
e.g., C(x)=1110 (3 + x% + X'; k=3)
- Want to make m + k bits divisible by this divisor ...

- First, add k zeros to end of message
- Then, divide by C(x) to find the remainder ...
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Example - Polynomial Division

11111001
Generator —= 1101)10011010000 <— Message
1101

1001
1101

1000
1101

1011
1101"

1100

1ﬂv v

1000
1101

101 «— Remainder
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Example — Remainder to CRC

So we see the remainder is 101

Thus the zero extended message - 101 must be evenly

divisible by C(x)!

So perform the subtraction to discover the check bits
- Subtraction/addition is XOR in modulo 2 arithmetic

- E.g., we get 10011010000 - 101 = 1011010101
- The check bits are 101

Finally, the message we send is 10011010101
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How is C(x) Chosen?

» Mathematical properties:
- All 1-bit errors if non-zero x< and x° terms
- All 2-bit errors if C(x) has a factor with at least three terms
- Any odd number of errors if C(x) has (x + 1) as a factor
- Any burst error < k bits

» There are standardized polynomials of different degree
that are known to catch many errors
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Standard CRC Polynomials

CRC-8 100000111

CRC-10 11000110011

CRC-12 110000000111

CRC-16  1000100000100000

CRC-32  100000100110000010001110110110111
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Reed-Solomon / BCH Codes

Reed-Solomon codes developed to protect data on
magnetic disks

Used for CDs and cable modems too
Property: 2t redundant bits can correct <=t errors
Mathematics somewhat more involved ...
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Key Concepts

» Message latency is the sum of the propagation and
transmission delays

» Redundant bits are added to messages to detect, and

in some cases correct, transmission errors.
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