CSE/EE 461 - Lecture 3 Bits, Encoding and Framing

David Wetherall djw@cs.washington.edu

Last Time ...

• Protocols, layering and reference models

djw // CSE/EE 461, Winter 2001

This Lecture

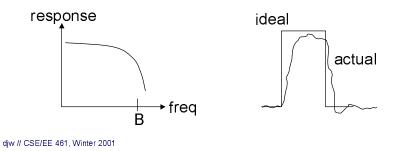
- A look at the physical/link layers:
 - 1. Different kinds of Media
 - 2. Encoding bits with signals
 - 3. Framing messages

djw // CSE/EE 461, Winter 2001

 Key Focus: How do we send a message across a wire? Application
Presentation
Session
Transport
Network

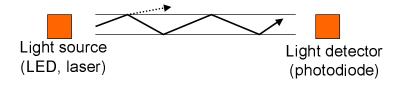
Data Link
Physical

L3.3


1. Different Kinds of Media

- Wire
 - Twisted pair, e.g., CAT5 UTP, 10 → 100Mbps, 100m
 - Coaxial cable, e.g, thin-net, 10 → 100Mbps, 200m
- Fiber
 - Multi-mode, 100Mbps, 2km
 - Single mode, $100 \rightarrow 2400 \text{ Mbps}$, 40 km
- Wireless
 - Infra-red, e.g., IRDA, ~1Mbps
 - RF, e.g., 802.11 wireless LANs, Bluetooth (2.4GHz)
 - Microwave, satellite, cell phones, ...

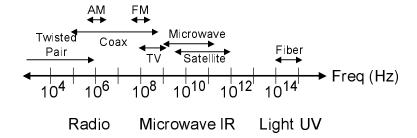
djw // CSE/EE 461, Winter 2001


Wires

- Signal subject to:
 - Attenuation (repeaters)
 - Distortion (frequency and delay)
 - Noise (thermal, crosstalk, impulse)

Fiber

- Long, thin, pure strand of glass
 - Enormous bandwidth available (terabits)


- Multi-mode allows many different paths, dispersion
- Chromatic dispersion if multiple frequencies

djw // CSE/EE 461, Winter 2001

L3.6

Wireless

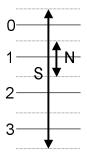
- Different frequencies have different properties
- Signals subject to atmospheric/environmental effects

djw // CSE/EE 461, Winter 2001

L3.7

2. Encoding Bits with Signals

• Generate analog waveform (e.g., voltage) from digital data at transmitter and sample to recover at receiver



- We send/recover symbols that are mapped to bits
 - Signal transition rate = baud rate, versus bit rate
- This is baseband transmission ... take a signals course!

djw // CSE/EE 461, Winter 2001

Aside: Bandwidth of a Channel

- EE: Bandwidth (B) (Hz) is the width of the pass-band in the frequency domain
- CS: "Bandwidth" (bps) is the information carrying capacity (C) of the channel
- Shannon showed how they are related by noise, which limits how many signal levels we can safely distinguish.

S=signal N=noise

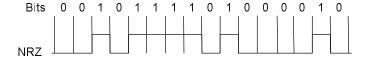
djw // CSE/EE 461, Winter 2001

L3.9

The Shannon Limit (1948)

• Define Signal to Noise Ratio (SNR):

SNR = 10log₁₀(signal / noise) decibels (dB) e.g, 30 dB means signal 1000 times noise


 For a noisy channel with bandwidth B (Hz) and given SNR, the maximum rate at which it is possible to send information, the channel capacity, is:

> C = B $log_2(1 + SNR)$ (bits/sec) e.g 3KHz and 30dB SNR \rightarrow 30Kbps

djw // CSE/EE 461, Winter 2001

NRZ and NRZI

- Simplest encoding, NRZ (Non-return to zero)
 - Use high/low voltages, e.g., high = 1, low = 0
- Variation, NRZI (NRZ, invert on 1)
 - Use transition for 1s, no transition for 0s

djw // CSE/EE 461, Winter 2001

L3.11

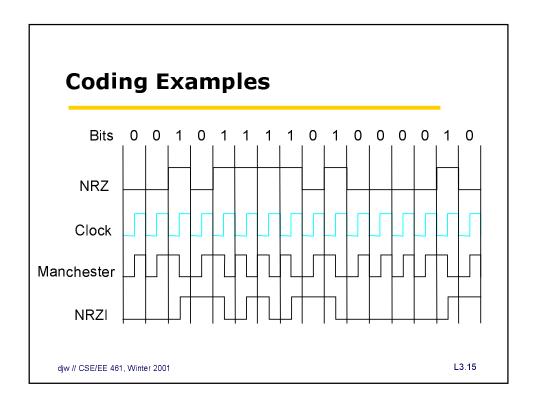
Clock Recovery

- Problem: How do we distinguish consecutive 0s or 1s?
- If we sample at the wrong time we get garbage ...
- If sender and receiver have exact clocks no problem
 - But in practice they drift slowly
- This is the problem of clock recovery
- Possible solutions:
 - Send separate clock signal → expensive
 - Keep messages short → limits data rate
 - Embed clock signal in data signal → other codes

djw // CSE/EE 461, Winter 2001

"Asynchronous" Transmission

- · Avoid timing problem by sending short, delimited data
 - E.g., UARTs (typically used to connect your keyboard)


djw // CSE/EE 461, Winter 2001

L3.13

Manchester Coding

- · Make transition in the middle of every bit period
 - Low-to-high is 0; high-to-low is 1
 - Signal rate is twice the bit rate
 - Used on 10 Mbps Ethernet
- Advantage: self-clocking
- Disadvantage: 50% efficiency

djw // CSE/EE 461, Winter 2001

4B/5B Codes

- We want transitions *and* efficiency ...
- Solution: map data bits (which may lack transitions) into code bits (which are guaranteed to have them)
- 4B/5B code:
 - $0000 \rightarrow 11110,0001 \rightarrow 01001, \dots 1111 \rightarrow 11101$
 - Never more than three consecutive 0s back-to-back
 - 80% efficiency
- This code is used by LANs such as FDDI

djw // CSE/EE 461, Winter 2001

3. Framing

- · Need to send message, not just bits
 - Even if we know where the bits are we still need to synchronize on the start of the message
 - Complete Link layer messages are called frames
- · Common approach: Sentinels
 - Look for special control code that marks start of frame

djw // CSE/EE 461, Winter 2001

L3.17

Point-to-Point Protocol (PPP)

• IETF standard, used for dialup and leased lines

Flag 01111110	(header)	Payload (variable)	(trailer)	Flag 01111110
------------------	----------	-----------------------	-----------	------------------

- Flag indicates start/end of frame
- · Occurrences of flag inside payload must be "stuffed"
 - Replace "flag" with "flag flag"
 - Length of payload is data-dependent!

djw // CSE/EE 461, Winter 2001

Other Approaches

- Use explicit byte count after preamble
 - More susceptible to errors?
- Use "invalid" codeword
 - E.g., pick non-data 4B/5B symbol, used for FDDI
- SONET: "clock"-based framing
 - Periodic sync bits plus very accurate clock
 - Used extensively in the telecommunications industry

djw // CSE/EE 461, Winter 2001

L3.19

Key Concepts

- Different media have different properties that affect higher layer protocols
- To send messages in practice we must solve the problems of clock recovery and framing

djw // CSE/EE 461, Winter 2001