CSE/EE 461 Winter 2001

Introduction to Computer Communication Networks

David Wetherall djw@cs.washington.edu

This Lecture

- 1. Administrative stuff
- 2. Course Intro
- 3. Statistical multiplexing

djw // CSE/EE 461, Winter 2001

1. Administrative Stuff

- Everything you need to know is on the handout and course web page
 - www.cs.washington.edu/education/course/461/01wi

djw // CSE/EE 461, Winter 2001

L1.3

2. Intro - What is a Network?

- Links carry information (bits)
 - Wire, wireless, fiber optic, smoke signals ...
 - May be point-to-point or broadcast
- Switches move bits between links
 - Routers, gateways, bridges, CATV headend, PABXs, ...
- Hosts are the communication endpoints
 - PC, PDA, cell phone, tank, toaster, ...
- Also called channels, nodes, intermediate systems, end systems, and much more.

djw // CSE/EE 461, Winter 2001

Example - Local Area Network

- Your home network
 - Ethernet is a broadcast-capable multi-access LAN

djw // CSE/EE 461, Winter 2001

L1.5

Example - An Internetwork

- Internetwork is a network of networks
- The Internet is a global internetwork in which all participants speak a common language
 - IP, the Internet Protocol

djw // CSE/EE 461, Winter 2001

Other Networks

- You've all used networks:
 - Telephone, Cable TV,
 - ATMs, Processor Interconnects
- We are interested in networks that are:
 - Distributed
 - Large scale
 - Multi-purpose

djw // CSE/EE 461, Winter 2001

L1.7

The meaning of "Distributed"

- There are distributed and parallel networks:
 - Cash machines versus a parallel computer
- What is the essential difference?
 - Tolerance of failed components
 - Decentralized operation
 - Heterogeneity
- Hard to get it right
 - "A distributed system is a system in which I can't do my work because some computer has failed that I've never even heard of." - Lamport

djw // CSE/EE 461, Winter 2001

Internet Domain Survey Host Count

Source: Internet Software Consortium (http://www.isc.org/)

djw // CSE/EE 461, Winter 2001

L1.9

The meaning of "Multi-purpose"

- Telephone network
 - Designed for telephone calls
- Internet
 - Web, email, Quake, e-commerce, audio/video, ...
 - But evolution was at work: Web/email a "surprise"
- Computer networks
 - Carry digital information and support a rich variety of distributed applications

djw // CSE/EE 461, Winter 2001

Why Build Networks?

- To enable communication at a distance
 - Want performance sufficient to given task
 - Video conference, etc.
- · To gain the benefits of resource sharing
 - Networks are shared among users
 - Fundamental issues concern the effective sharing of distributed resources
 - Effective = cost, control, secure, reliable, ...

djw // CSE/EE 461, Winter 2001

L1.11

Goal of this Course

- For you to understand the design of *large*, *distributed computer* networks.
- Fundamental problems in building networks
 - That are fast, efficient, secure and robust
- Design principles of proven value
 - Networking is young and there are few!
- Common implementation technologies
 - These will change of course ...

djw // CSE/EE 461, Winter 2001

Topics and Key Problems

- Multi-access (Ethernet)
- Routing (IP)
- Transport (TCP)
- Congestion control (TCP)
- Multicast (Mbone)
- Real time (DiffServ)
- Naming (DNS)
- Security (IPSEC)

- Coordination
- Robust operation
- Reliable delivery
- Resource allocation
- Efficient delivery
- Multimedia
- Distributed state
- Authentication/Privacy

djw // CSE/EE 461, Winter 2001

L1.13

Lecture Emphasis

- What we do cover:
 - Communications
 - Internetworking

← We focus here

- Distributed systems
- What we don't cover:
 - Design of communications hardware
 - Queuing theory
 - Protocol standards

djw // CSE/EE 461, Winter 2001

3. Multiplexing

- Problem: How to multiplex (share) a resource amongst multiple users, especially sharing a link?
- Well, we could statically partition the link:
 - Frequency Division Multiplexing (FDM)
 - (Synchronous) Time Division Multiplexing (TDM, STDM)

djw // CSE/EE 461, Winter 2001

L1.15

Frequency Division Multiplexing

- · Simultaneous transmission in different frequency bands
 - Analog: Radio/TV, AMPS cell phones (800MHz)
 - Also called Wavelength DMA (WDMA) for fiber

"Speaking at different pitches"

djw // CSE/EE 461, Winter 2001

Time Division Multiplexing

- Timeslice given frequency band between users
 - Digital: used extensively inside the telephone network
 - T1 (1.5Mbps) is 24 x 8 bits/125us; also E1 (2Mbps, 32 slots)

"Speaking at different times"

Advantage: lower delay; Disadvantage: synchronization

djw // CSE/EE 461, Winter 2001

L1.17

Statistical Multiplexing

- Static partitioning schemes work well for a fixed number of users that always have data to send
- Not suited to data communications: peak>>average
- If we share on demand we can support more users
 - Based on the statistics of their transmissions
 - Occasionally we might be oversubscribed
- Statistical multiplexing is heavily used in data networks

djw // CSE/EE 461, Winter 2001

Example

- One user sends at 1 Mbps and is idle 90% of the time.
 - 10 Mbps channel; 10 users if statically allocated

· What are the likely loads if we share on demand?

djw // CSE/EE 461, Winter 2001

L1.19

Example continued

- For 10 users, Prob(need 10 Mbps) = 10^{-10}
- So keep adding users ...
- For 35 users, Prob(>10 active users) = 0.17%
- We can support three times as many users!
- But: there is an important caveat here ...

djw // CSE/EE 461, Winter 2001

Key Concepts

- Networks are used to share distributed resources
 - Key problems revolve around effective resource sharing
- Statistical multiplexing
 - It's well-suited to data communications

djw // CSE/EE 461, Winter 2001