Last Time …

- Protocols, layering and reference models

The OSI Model	Sample Protocol Stack
Physical | Ethernet
Link | IP
Network | TCP
Transport | HTTP
Session | “Netscape”
Presentation | Application
This Lecture

• The physical/link layers:
 – Different kinds of media
 – Model of a link
 – Framing messages

• Focus: How do we send a message across a wire?

1. Different kinds of media

• Wire
 – Twisted pair, e.g., CAT5 UTP, 10 → 100Mbps, 100m
 – Coaxial cable, e.g, thin-net, 10 → 100Mbps, 200m

• Fiber
 – Multi-mode, 100Mbps, 2km
 – Single mode, 100 → 2400 Mbps, 40km

• Wireless
 – Infra-red, e.g., IRDA, ~1Mbps
 – RF, e.g., 802.11 wireless LANs, Bluetooth (2.4GHz)
 – Microwave, satellite, cell phones, …
Wires

- Signal subject to:
 - Attenuation (repeaters)
 - Distortion (frequency and delay)
 - Noise (thermal, crosstalk, impulse)

\[
\text{response} \quad \text{freq} \quad B \quad \text{ideal} \quad \text{actual}
\]

Fiber

- Long, thin, pure strand of glass
 - Enormous bandwidth available (terabits)

\[
\text{Light source (LED, laser)} \quad \text{Light detector (photodiode)}
\]

- Multi-mode allows many different paths, dispersion
- Chromatic dispersion if multiple frequencies
Wireless

- Different frequencies have different properties
- Signals subject to atmospheric/environmental effects

2. Model of a Link

- Abstract model is typically all we will need
 - What goes in comes out altered by the model
- Other parameters that are sometimes relevant
 - The kind and frequency of errors
 - Whether the media is broadcast or not
Message Latency

- How long does it take to send a message?

![Message M](image)

Delay D, Rate R

- Two terms:
 - Propagation delay = distance / speed of light in media
 - Transmission delay = message (bits) / rate (bps)
- In effect, slow links stretch bits out in time/space
- Later we will see queuing delay …

One-way Latency examples

- Either a slow link or long wire makes for large latency

- Dialup with a modem:
 - D = 10ms (say), R = 56Kbps, M = 1000 bytes
 - Latency = 10ms + (1024 x 8)/(56 x 1024) sec = 153ms!

- Cross-country with T3 (45Mbps) line:
 - D = 50ms, R = 45Mbps, M = 1000 bytes
 - Latency = 50ms + (1024 x 8) / (45 x 1000000) sec = 50ms!
Terminology

- Latency is typically the one way delay over a link
 - But latency and delay are generic terms
- The round trip time (RTT) is twice the one way delay
 - Measure of how long to signal and get a response
- An important metric is the bandwidth-delay product
 - Measure of how much data can be in-flight at a time

3. Framing

- Need to send message, not just bits
 - Requires that we synchronize on the start of message reception at the far end of the link
 - Complete Link layer messages are called **frames**
- Common approach: Sentinels
 - Look for special control code that marks start of frame
 - And escape or “stuff” this code within the data region
Point-to-Point Protocol (PPP)

• IETF standard, used for dialup and leased lines

<table>
<thead>
<tr>
<th>Flag 0x7E</th>
<th>(header)</th>
<th>Payload (variable)</th>
<th>(trailer)</th>
<th>Flag 0x7E</th>
</tr>
</thead>
</table>

• Flag is special and indicates start/end of frame
• Occurrences of flag inside payload must be “stuffed”
 – Replace 0x7E with 0x7D, 0x5E
 – Replace 0x7D with 0x7D, 0x5D

Alternatives that avoid stuffing

• “Invalid” signal from physical layer
 – Just trust me. Used in Ethernet and FDDI (later).
• Explicit byte count after flag
• SONET: “clock”-based framing
 – Periodic sync information plus very accurate clock
 – Used extensively in the telecommunications industry

• What are the pros and cons?
 – Efficiency (in terms of bandwidth)
 – Robustness (with respect to errors)
Key Concepts

- We typically model links in terms of bandwidth and delay, from which we can calculate message latency
- Different media have different properties that affect their performance as links
- Framing allows complete messages to be recovered at the far end of the link