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Lecture 20:
Surface Modeling
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Reading

Hearn and Baker, sections 10.8, 10.9, 10.14.

Optional:

w Bartels, Beatty, and Barsky.  An Introduction to Splines for use in 
Computer Graphics and Geometric Modeling, 1987.

w Stollnitz, DeRose, and Salesin.  Wavelets for Computer Graphics:  
Theory and Applications, 1996, section 10.2.
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Surfaces of revolution

Idea:  rotate a 2D profile curve around an axis.

What kinds of shapes can you model this way?
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Variations

Several variations are possible:

w Scale C(u) as it moves, possibly using length of T(v) as a scale 
factor.

w Morph C(u) into some other curve C’(u) as it moves along T(v).

w …
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Constructing surfaces of revolution

Given: A curve C(u) in the yz-plane:

Let Rx(θ) be a rotation about the x-axis.

Find: A surface S(u,v) which is C(u) rotated about the z-axis.
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General sweep surfaces

The surface of revolution is a special case of a swept surface.

Idea: Trace out surface S(u,v) by moving a profile curve C(u) along a 
trajectory curve T(v).

More specifically:

w Suppose that C(u) lies in an (xc,yc) coordinate system with origin Oc.
w For every point along T(v), lay C(u) so that Oc coincides with T(v).
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Orientation

The big issue:

w How to orient C(u) as it moves along T(v)?

Here are two options:

1.  Fixed (or static):  Just translate Oc along T(v).

2.  Moving.  Use the Frenet frame of T(v).

w Allows smoothly varying orientation.

w Permits surfaces of revolution, for example.
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Frenet frames

Motivation:  Given a curve T(v), we want to attach a smoothly varying 
coordinate system.

To get a 3D coordinate system, we need 3 independent direction vectors.

As we move along T(v), the Frenet frame (t,b,n) varies smoothly.
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Frenet swept surfaces

Orient the profile curve C(u) using the Frenet frame of the 
trajectory T(v):

w Put C(u) in the normal plane nb.

w Place Oc on T(v).

w Align xc for C(u) with -n.

w Align yc for C(u) with b.

If T(v) is a circle, you get a surface of revolution exactly?
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Building complex models
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Subdivision surfaces

Chaikin’s use of subdivision for curves inspired similar techniques for 
subdivision.

Iteratively refine a control polyhedron (or control mesh) to produce the 
limit surface

using splitting and averaging steps.

There are two types of splitting steps:

w vertex schemes

w face schemes
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Vertex schemes

A vertex surrounded by n faces is split into n subvertices, one 
for each face: 

Doo-Sabin subdivision:
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Face schemes

Each quadrilateral face is split into four subfaces:

Catmull-Clark subdivision:
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Face schemes, cont.

Each triangular face is split into four subfaces:

Loop subdivision:
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Adding creases without trim curves

In some cases, we want a particular feature such as a crease to 
be preserved.  With NURBS surfaces, this required the use of 
trim curves.

For subdivision surfaces, we can just modify the subdivision 
mask.
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Creases with trim curves, cont.

Here’s an example using Catmull-Clark surfaces of the kind 
found in Geri’s Game:
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Summary

What to take home:

w Surfaces of revolution

w How to construct swept surfaces from a profile and trajectory curve:
• with a fixed frame

• with a Frenet frame

w Subdivision surfaces


