
8. Hierarchical Modeling

1

Reading

Recommended:

� Angel, Sections 8.1{8.6

2

Symbols and instances

Most graphics API's support a few geometric

\primitives" | e.g.:

� spheres

� cubes

� cylinders

These \symbols" (or \masters") are \instanced" using

an \instance transformation":

Instance transformation (Angel, �g 8.2)

Q: What is the matrix for the instance transformation

above?

3

Instancing in OpenGL

In OpenGL, instancing is created by modifying the

\model-view matrix":

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glTranslatef(...);

glRotatef(...);

glScalef(...);

cylinder();

4

Hierarchical modeling

Hierarchical models can be composed of instances using

trees or DAGS:

Chassis

Wheel

R-F
R-R L-F

L-R

Chassis

Left-front
wheel

Right-rear
wheel

Left-rear
wheel

Right-front
wheel

Two representations of a simple car

� Edges contain geometric transformations

� Nodes contain geometry (and possibly drawing

attributes)

5

Example: A robot arm

Consider this robot arm with 3 degrees of freedom:

1. Base rotates about its vertical axis by �

2. Lower arm rotates in its xy-plane by �

3. Upper arm rotates in its xy-plane by

A robot arm (Angel, �g. 8.8)

Q: What is the tree structure of the robot?

Q: What matrix do we use to transform the base?

Q: What matrix for the lower arm?

Q: What matrix for the upper arm?

6

Robot arm implementation

The robot arm can be displayed by altering the

model-view matrix incrementally:

display()

{

glRotatef(theta, 0., 1., 0.);

base();

glTranslatef(0., h1, 0.);

glRotatef(phi, 0., 0., 1.);

lower_arm();

glTranslatef(0., h2, 0.);

glRotatef(psi, 0., 0., 1.);

upper_arm();

}

7

A more complex example: Human �gure

Head

Left-lower
arm

Left-upper
arm

Right-upper
arm

Left-upper
leg

Right-upper
leg

Left-lower
leg

Right-lower
leg

Right-lower
arm

Torso

Mh

Mlua Mrua Mlul

Mrul

Mlla
Mrla Mlll Mrll

Human �gure

Q: What's the most sensible way to traverse this tree?

8

Human �gure implementation

The traversal can be implemented by pushing the

model-view matrix onto a stack:

figure()

{

torso();

glPushMatrix();

glTranslate

glRotate3

head();

glPopMatrix();

glPushMatrix();

glTranslate

glRotate3

left_upper_leg();

glTranslate

glRotate3

left_lower_leg();

glPopMatrix();

glPushMatrix();

.

.

}

9

Animation

The above examples are called \articulated models":

� rigid parts

� connected by joints

They can be animated by specifying the joint angles (or

other display parameters) as functions of time.

(Note that each one can be changed independently.)

10

Kinematics and dynamics

De�nitions:

� \Kinematics": How the positions of the parts vary

as a function of joint angles.

� \Dynamics": How the positions of the parts vary as

a function of applied forces.

Questions:

Q: What do the terms \inverse kinematics" and

\inverse dynamics" mean?

Q: Why are these problems more di�cult?

11

Key-frame animation

One way to get around these problems is to use

\key-frame animation":

� Each joint speci�ed at various \key frames" (not

necessarily the same as other joints)

� System does the interpolation or \inbetweening"

Doing this well requires:

� A way of smoothly interpolating key frames:

\splines"

� A good interactive system

� A lot of skill on the part of the animator!

12

Scene graphs

The idea of hierarchical modeling can be extended to an

entire scene, encompassing:

� many di�erent objects

� lights

� camera position

Called a \scene tree" or a \scene graph."

13

Summary

Here's what you should take away from this lecture:

1. All the terms in quotations.

2. How primitives can be instanced and composed to

create hierarchical models using geometric

transformations.

3. How this notion can be extended to entire scenes.

4. How keyframe animation works.

14

