
1

Ray Tracing
Extensions

2

Reading

Foley et al., 15.10 and 16.12

Optional:
• Glassner, An introduction to Ray Tracing, Academic Press,

Chapter 1.
• T. Whitted. “An improved illumination model for shaded
 display”. Communications of the ACM} 23(6), 343-349,

1980.

3

Goodies
• There are some advanced ray tracing feature that

self-respecting ray tracers shouldn’t be caught without:
– Acceleration techniques
– Antialiasing
– Distribution ray tracing
– CSG

4

Acceleration Techniques
• Problem: ray-object intersection is very expensive

– make intersection tests faster
– do fewer tests

5

Fast Failure
• We can greatly speed up ray-object intersection by identifying cheap

tests that guarantee failure
• Example: if origin of ray is outside sphere and ray points away from

sphere, fail immediately.

• Many other fast failure conditions are possible!

6

Hierarchical Bounding Volumes

• Arrange scene into a tree
– Interior nodes contain primitives with very simple intersection tests (e.g.,

spheres). Each node’s volume contains all objects in subtree
– Leaf nodes contain original geometry

• Like BSP trees, the potential benefits are big but the hierarchy is hard
to build

Intersect with largest
bounding volume

The intersect with children

Eventually, intersect with primitives

7

Spatial Subdivision

• Divide up space and record what objects are in each cell
• Trace ray through voxel array

Uniform subdivision
in 3D

Uniform subdivision
in 2D

Quadtre
e

Octre
e

8

Antialiasing
• So far, we have traced one ray through each pixel in the

final image. Is this an adequate description of the contents
of the pixel?

• This quantization through inadequate sampling is a form of
aliasing. Aliasing is visible as “jaggies” in the ray-traced
image.

• We really need to colour the pixel based on the average
colour of the square it defines.

9

Supersampling
• We can approximate the average colour of a pixel’s area by

firing multiple rays and averaging the result.

10

Adaptive Sampling
• Uniform supersampling can be wasteful if large parts of the pixel don’t

change much.
• So we can subdivide regions of the pixel’s area only when the image

changes in that area:

• How do we decide when to subdivide?

11

Distribution Ray Tracing
• Usually known as “distributed ray tracing”, but it has nothing to do

with distributed computing
• General idea: instead of firing one ray, fire multiple rays in a jittered

grid

• Distributing over different dimensions gives different effects
• Example: what if we distribute rays over pixel area?

12

Distributing Reflections
• Distributing rays over

reflection direction gives:

13

Disrtibuted ray tracing pseudocode
1. Partition pixel into 16 regions assigning them id 1-16
2. Partition the reflection direction into 16 angular regions

and assign an id (1-16) to each
3. Select sub pixel m=1
4. Cast a ray through m, jittered within its region
5. After finding an intersection, reflect into sub-direction m,

jittered within that region
6. Add result to current pixel total
7. Increment m and if m<= 16, go to step 4
8. Divide by 16, store result and move on to next pixel.

14

DRT pseudocode
TraceImage() looks basically the same, except now each pixel records the

average color of jittered sub-pixel rays.

function traceImage (scene):
for each pixel (i, j) in image do
I(i, j) ← 0
for each sub-pixel id in (i,j) do

s ← pixelToWorld(jitter(i, j, id))
p ← COP
d ←(s - p).normalize()
I(i, j) ← I(i, j) + traceRay(scene, p, d, id)

end for
I(i, j) 🡨 I(i, j)/numSubPixels

end for
end function

A typical choice is numSubPixels = 4*4.

15

DRT pseudocode (cont’d)
Now consider traceRay(), modified to handle (only) opaque

glossy surfaces:

function traceRay(scene, p, d, id):
(q, N, material) ← intersect (scene, p, d)
I ← shade(…)
R ← jitteredReflectDirection(N, -d, id)
I ← I + material.kr * traceRay(scene, q, R, id)
return I

end function

16

Pre-sampling glossy reflections

17

Distributing Refractions
• Distributing rays over transmission direction gives:

18

Distributing Over Light Area
• Distributing over light

area gives:

19

Distributing Over Aperature
Choose a point on a finite aperature and trace through the

“in-focus point”.

• What does this simulate?

20

Distributing Over Time
• We can endow models with velocity vectors and distribute

rays over time. this gives:

21

22

In general, you can trace rays through a scene and keep track
of their id’s to handle all of these effects:

Chaining the ray id’s

23

CSG
• CSG (constructive solid geometry) is an incredibly powerful way to

create complex scenes from simple primitives.

• CSG is a modeling technique; basically, we only need to modify
ray-object intersection.

24

CSG Implementation
• CSG intersections can be analyzed using “Roth diagrams”.

– Maintain description of all intersections of ray with primitive
– Functions to combine Roth diagrams under CSG operations

• An elegant and extremely slow system

