Ray Tracing
Extensions

Reading

Foley et al., 15.10 and 16.12

Optional:

 Glassner, An introduction to Ray Tracing, Academic Press,
Chapter 1.

« T. Whitted. “An improved illumination model for shaded

display”. Communications of the ACM} 23(6), 343-349,
1980.

Goodies

e There are some advanced ray tracing feature that
self-respecting ray tracers shouldn’t be caught without:
— Acceleration techniques
— Antialiasing
— Distribution ray tracing
— CSG

Acceleration Techniques

* Problem: ray-object intersection is very expensive
— make intersection tests faster
— do fewer tests

Fast Failure

* We can greatly speed up ray-object intersection by identifying cheap
tests that guarantee failure

« Example: if origin of ray is outside sphere and ray points away from
sphere, fail immediately.

fea >0, sothe ray ’ea< 0, s0 the ray
points toward the sphere points away from the sphere

e Many other fast failure conditions are possible!

Hierarchical Bounding Volumes

@ D@

Intersect with largest The intersect with children
bounding volume

7 [

A =

Eventually, intersect with primitives

e Arrange scene into a tree

— Interior nodes contain primitives with very simple intersection tests (e.g.,
spheres). Each node’s volume contains all objects in subtree

— Leaf nodes contain original geometry

» Like BSP trees, the potential benefits are big but the hierarchy is hard
to build

Spatial Subdivision

e
e =
| > |
,P 11—
~ 8
= N . =
/
Uniform subdivision Quadtre
in 2D e
Uniform subdivision Octre
in3D e

« Divide up space and record what objects are in each cell
e Trace ray through voxel array

Antialiasing

* So far, we have traced one ray through each pixel in the
final image. Is this an adequate description of the contents
of the pixel?

FREN N

* This quantization through inadequate sampling is a form of
aliasing. Aliasing 1s visible as “jaggies” in the ray-traced
image.

* We really need to colour the pixel based on the average
&

Supersampling

* We can approximate the average colour of a pixel’s area by
firing multiple rays and averaging the result.

Adaptive Sampling

Uniform supersampling can be wasteful if large parts of the pixel don’t
change much.

So we can subdivide regions of the pixel’s area only when the image
changes in that area:

+ How do we decide when to sUbdivide7 oo = =

10

Distribution Ray Tracing

* Usually known as “distributed ray tracing”, but i1t has nothing to do
with distributed computing

* General idea: instead of firing one ray, fire multiple rays in a jittered
grid

» Distributing over different dimensions gives different effects
« Example: what if we distribute rays over pixel area?

11

Distributing Reflections

 Distributing rays over
reflection direction gives:

Disrtibuted ray tracing pseudocode

. Partition pixel into 16 regions assigning them 1d 1-16

. Partition the reflection direction into 16 angular regions
and assign an 1d (1-16) to each

. Select sub pixel m=1
. Cast a ray through m, jittered within its region

. After finding an intersection, reflect into sub-direction m,
jittered within that region

. Add result to current pixel total
. Increment m and 1f m<= 16, go to step 4
. Divide by 16, store result and move on to next pixel.

13

DRT pseudocode

Tracelmage() looks basically the same, except now each pixel records the
average color of jittered sub-pixel rays.

function tracelmage (scene):
for each pixel (1, j) in image do
I(1, j) <= 0
for each sub-pixel 1d in (1,)) do
s « pixelToWorld(jitter(i, j, id))
p — COP
d <(s - p).normalize()
I(1, j) < I(1,) + traceRay(scene, p, d, 1d)
end for
I(i, j) [J I(i, j)/numSubPixels
end for
end function

A typical choice 1s numSubPixels = 4*4,

14

DRT pseudocode (cont’d)

Now consider traceRay(), modified to handle (only) opaque
glossy surfaces:

function fraceRay(scene, p, d, id):
(q, N, material) « intersect (scene, p, d)
[« shade(...)
R « jitteredReflectDirection(N, -d, id)
[< I+ material. kK * traceRay(scene, q, R, id)
return | !
end function

15

Pre-sampling glossy reflections

function 2 %

Pre-sampled reflection ,_:"". /
| ,

function for object 2

it B

6|]
250l
7 a6
12 /} S Pre-sampled
/1} 13 | " reflection function
1/}/ for object 1
4
L Pixel indices

1V

Distributing Refractions

 Distributing rays over transmission direction gives:

Distributing Over Light Area

 Distributing over light
area gives:

Lisht

2 F g

Oocluder

Distributing Over Aperature

Choose a point on a finite aperature and trace through the
“in-focus point”. Aperture

Image plane Plane in focus

Distributing Over Time

* We can endow models with velocity vectors and distribute
rays over time. this gives:

20

21

Chaining the ray id’s
In general, you can trace rays through a scene and keep track
of their 1d’s to handle all of these effects:

=

Light source

22

CSG

* (CSG (constructive solid geometry) 1s an incredibly powerful way to
create complex scenes from simple primitives.

* (CSG is a modeling technique; basically, we only need to modify
ray-object intersection.

23

CSG Implementation

CSG ntersections can be analyzed using “Roth diagrams”.
— Maintain description of all intersections of ray with primitive
— Functions to combine Roth diagrams under CSG operations

Left Right
L s e e e e
R = e e
L+HR=-——-—=—- —_—— — - ————
L&8R =—-==-—— e _ e o e o o e e e e T S e e S e R R
L-R=-=-——== e e, e ——— e —— e e e
L+R L&R L-R

* An elegant and extremely slow system

24

