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Reading

Optional reading:

¢ Angel and Shreiner: 3.1, 3.7-3.11
¢ Marschner and Shirley: 2.3, 2.4.1-2.4 4,
6.1.1-6.14, 6.2.1, 6.3

Further reading:
* Angel, the rest of Chapter 3
+ Foley, et al, Chapter 5.1-5.5.

¢ David F. Rogers and J. Alan Adames,
Mathematical Elements for Computer Graphics,
2nd Ed., McGraw-Hill, New York, 1990, Chapter
2.



Geometric transformations

Geometric transformations will map points in one
space to points in another: (x’, y’, z") = MZ).

These transformations can be very simple, such as
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.



Vector representation

We can represent a point, p = (X, y), in the plane orp =(x, y,
z) in 3D space:
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Vector length and dot products
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Representation, cont.

We can represent a 2-D transformation M by a

matrix
c d
If p is a column vector, M goes on the left:
p'=Mp

]

If p is a row vector, M7 goes on the right:
T

o e e

We will use column vectors.



Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M :
x' :{ a b X
y' c d |y

x'=ax+by

So:

y'=cx+dy

We will develop some intimacy with the elements a, b, c,
d...



Identity

Suppose we choosea=d=1,b=c=0:

¢+ Gives the identity matrix:

Bl

¢ Doesn't move the points at all
e
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Scaling

Suppose we set b =c¢ =0, but let a and d take on
any positive value:

+ Gives a scaling matrix:

oo

+ Provides differential (non-uniform) scaling

in X andy: O
y'=dy
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Suppose we keep b =c =0, but let either a or d go
negative.
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Now let's leave a=d =1 and experiment withb . ..

The matrix

gives:

>
>

L]

0 1
x'=x+by
y'=y

y
A
1 5
R
4

12



Effect on unit square

Let's see how a general 2 x 2 transformation M affects
the unit square:
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Effect on unit square, cont.

Observe:

¢ Origin invariant under M

¢+ M can be determined just by knowing how the
corners (1,0) and (0,1) are mapped

¢ aand d give x- and y-scaling
¢ b and c give x- and y-shearing
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Rotation 3. cah toa

From our observations of the effect on the unit
square, it should be easy to write down a matrix for
“rotation about the origin”:

y y
A
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Thus,
coobr e
M:R(Q): 511'\6— COJ@
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Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

¢ Scaling

¢ Rotation
Reflection
¢ Shearing

4

Q: What important operation does that leave out?
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Homogeneous coordinates

|dea is to loft the problem up into 3-space, adding
a third component to every point:

[ ] :
X
=y
g 1
Adding the third “"w" component puts us in
homogenous coordinates.

And then transform with a 3 x 3 matrix:

x' X 10 L X
=T » |=| 0 1 ¢ | v
w' 1 00 1 _1
y y
A A
10
0 1
1 1+ 00

. gives translation!
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Anatomy of an affine matrix

The addition of translation to linear
transformations gives us affine
transformations.

In matrix form, 2D affine transformations

always look like this:s |
=\, @: A |t

0 0 1

2D affine transformations always have a
bottom row of [0 0 1].

An “affine point” is a “linear point” with an
added w-coordinate which i axlw ys 1:
= Pin |z

1

y
1

Pats

Applying an affine transformation gives

another affine point: _
Mpaff :\‘ Ap“n +t }
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Rotation about arbitrary points

Until now, we have only considered rotation about the

origin.

With homogeneous coordinates, you can specify a

rotation by S, about any point g = [qy qy]T with a matrix. ] (—E\ e

Let's do this with rotation and translation matrices of the
form R(@) and T(t), respectively.

¥

1. Translate q to origin
2. Rotate

3. Translate back

¥ ¥ :
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Points and vectors

Vectors have an additional coordinate of w=0. Thus, a
change of origin has no effect on vectors.

0
Q: What happens if we multiply a vector by an affine < Zﬂé\)‘/}r p KBQX

matrix? a b £ Due a Ve + by ] !
~ A
C A ICT A e CVa ’ VY _ Q(A&T(é(b(f
o A
These representations reflect some of the rules of
affine operations on points and vectors:
< AT BB
vector + vector — V(o o4 =0 =) vechse
scalar - vector — Vects i | _7 &
point - point  — Vet b Pe .
: - W
point + vector —» penT st 2 ch
point +point  — Chaos
scalar - vector + scalar -vector — ye<ts o
scalar-point + scalar-point  —> - Ax@»w}”ﬁ
One useful combination of affine operations is; \\ /V\
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/

20



Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-
D ones.

For example, scaling:

x' x 0 X
y': O Y 0 Y
z 0/ O 0 z

1 Jlo 0o 0o 1Lt
y
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Translation in 3D

1
0
0
0
>
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Rotation in 3D (cont'd)

These are the rotations about the canonical
Sy [ .

@) 1 0 0 0
0 cosa -sina O
0 sina cosa O
0 0 0 1

R, (8)=[

cosg 0 sing O
0 1 0 O
-sing 0 cosp O
0 0O 0 1

R, (»)=[

Use right hand

cosy -—siny o
ru

siny cosy
0 0
0 0

o O O
R O O O

A general rotation can be specified in terms of
a product of these three matrices, Ho e
might y(gu\%pedgf\y aéfotazt'reﬂ?‘)\ in’@o }%e}@

ks eI
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Shearing in 3D

Shearing is also more complicated. Here is one

example:
x' | o_x
yo_{lol[1/[o] 0 | ¥
z' 0 0 z
1 __0 00 1__1_
Y
A
S)—> T
z

We call this a shear with respect to the x-z plane.
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Properties of affine transformations

Here are some useful properties of affine
transformations:

* Lines map to lines
¢ Parallel lines remain parallel

+ Midpoints map to midpoints (in fact, ratios
are always preserved)

5>
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ratio =
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Summary

What to take away from this lecture:

*

*

All the names in boldface.

How points and transformations are
represented.

How to compute lengths, dot products, and
cross products of vectors, and what their
geometrical meanings are.

What all the elements of a 2 x 2
transformation matrix do and how these
generalize to 3 x 3 transformations.

What homogeneous coordinates are and how
they work for affine transformations.

How to concatenate transformations.

The mathematical properties of affine
transformations.
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