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Reading

Required:

⬥ Marschner and Shirley, Ch. 4, Section 
13.1-13.2 (online handout)

⬥ Triangle intersection (online handout)

Further reading:

⬥ Shirley errata on syllabus page, needed 
if you work from his book instead of the 
handout, which has already been 
corrected.

⬥ T. Whitted. An improved illumination 
model for shaded display. 
Communications of the ACM 23(6), 
343-349, 1980. 

⬥ A. Glassner.  An Introduction to Ray 
Tracing.  Academic Press, 1989. 

⬥ K. Turkowski, “Properties of Surface 
Normal Transformations,” Graphics 
Gems, 1990, pp. 539-547. 
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Geometric optics

Modern theories of light treat it as both a 
wave and a particle.  

We will take a combined and somewhat 
simpler view of light –  the view of geometric 
optics.

Here are the rules of geometric optics:

⬥ Light is a flow of photons with 
wavelengths.  We'll call these flows “light 
rays.”

⬥ Light rays travel in straight lines in free 
space.

⬥ Light rays do not interfere with each 
other as they cross.

⬥ Light rays obey the laws of reflection and 
refraction.

⬥ Light rays travel from the light sources to 
the eye, but the physics is invariant 
under path reversal (reciprocity).
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Eye vs. light ray tracing

Where does light begin?

At the light: light ray tracing (a.k.a., forward 
ray tracing or photon tracing)

At the eye: eye ray tracing (a.k.a., backward 
ray tracing)

We will generally follow rays from the eye 
into the scene.
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Precursors to ray tracing

Local illumination

⬥ Cast one eye ray, then shade according 
to light

Appel (1968)

⬥ Cast one eye ray + one ray to light
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Whitted ray-tracing algorithm

In 1980, Turner Whitted introduced ray tracing to 
the graphics community.

⬥ Combines eye ray tracing + rays to light
⬥ Recursively traces rays

Algorithm: 

2. For each pixel, trace a primary ray in direction V to 
the first visible surface.

3. For each intersection, trace secondary rays:

⬥ Shadow rays in directions Li to light sources
⬥ Reflected ray in direction R.
⬥ Refracted ray or transmitted ray in direction 

T.
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Whitted algorithm (cont'd)

Let's look at this in stages:
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Ray casting and local illumination

Now let’s actually build the ray tracer in 
stages.  We’ll start with ray casting and local 
illumination:
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Direct illumination

A ray is defined by an origin P and a unit 
direction d and is parameterized by t  > 0 :

r(t) = P + t d

Let  I(P, d) be the intensity seen along a ray.  
Then:

I(P, d) = Idirect

where

⬥ Idirect  is computed from the Blinn-Phong 
model 
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Ray-tracing pseudocode

We build a ray traced image by casting rays 
through each of the pixels.

function traceImage (scene):
for each pixel (i, j) in image

A = pixelToWorld (i, j)
P = C
d = (A – P )/|| A – P ||
I(i,j) = traceRay (scene, P, d)

end for
end function

function traceRay (scene, P, d):
(t∩, N, mtrl)  ← scene.intersect (P, d)
Q 🡨 ray (P, d) evaluated at t∩
I = shade (                                            )
return I

end function
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Shading pseudocode

Next, we need to calculate the color returned by 
the shade  function.

function shade (mtrl, scene, Q, N, d):
I ← mtrl.ke  
for each light source Light do:

atten = Light -> distanceAttenuation (                 
) 

L = Light -> getDirection (             )
I ← I + ambient + atten*(diffuse + 

specular)
 end for 

return I
end function
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Ray casting with shadows

Now we’ll add shadows by casting shadow 
rays:
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Shading with shadows

To include shadows, we need to modify the 
shade function:

function shade (mtrl, scene, Q, N, d):
I ← mtrl.ke  
for each light source Light do:

atten = Light -> 
distanceAttenuation(Q ) *

Light -> shadowAttenuation(                       
)

L = Light -> getDirection (Q )
I ← I + ambient + atten*(diffuse + 

specular)
end for 
return  I

end function
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Shadow attenuation

Computing a shadow can be as simple as 
checking to see if a ray makes it to the light 
source.  
For a point light source:

function PointLight ::shadowAttenuation (scene, 
Q )

L= getDirection(Q )
(t∩, N, mtrl) ← scene.intersect (Q, L)

Compute tlight
if (t∩ < tlight) then:

atten = (0, 0, 0)
else

atten = (1, 1, 1)
end if
return atten

end function

Note: we will later handle color-filtered 
shadowing, so this function needs to return a 
color  value.

For a directional light, tlight = ∞.
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Shading in “Trace”

The Trace project uses a version of the 
Blinn-Phong shading equation we derived in 
class, with two modifications:

⬥ Distance attenuation is clamped to be at 
most 1:

⬥ Shadow attenuation Ashadow is included and 
is RGB-valued.

Here’s what the shading equation should look 
like:

This is the shading equation to use in the 
Trace project!



16

Recursive ray tracing with 
reflection

Now we’ll add reflection:
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Shading with reflection

Let  I(P, d) be the intensity seen along a ray.  
Then:

I (P, d) = Idirect + Ireflected

where

⬥ Idirect is computed from the Blinn-Phong 
model, plus shadow attenuation 

⬥ Ireflected = ks  I(Q, R)
 

Remember that is a color value.

(Sometimes another variable, kr, is used instead 
of ks to allow for separate control of specular light 
reflection vs specular interreflection.  We will not 
do this.)
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Reflection

Law of reflection:

θi  = θr

R is co-planar with d and N.
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Ray-tracing pseudocode, 
revisited

function traceRay (scene, P, d):
(t∩, N, mtrl)  ← scene.intersect (P, d)
Q 🡨 ray (P, d) evaluated at t∩
I = shade (scene, mtrl, Q, N, d)
R = reflectDirection (                    )

I ← I + mtrl.ks * traceRay(scene, Q, R)
return  I

end function
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Terminating recursion

Q: How do you bottom out of recursive ray 
tracing?

Possibilities:
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Whitted ray tracing

Finally, we’ll add refraction, giving us the 
Whitted ray tracing model:
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Shading with reflection and refraction

Let  I(P, d) be the intensity seen along a ray.  
Then:

I(P, d) = Idirect + Ireflected + Itransmitted

where

⬥ Idirect  is computed from the Blinn-Phong 
model, plus shadow attenuation

⬥ Ireflected = ks I(Q, R) 
⬥ Itransmitted = kt I(Q, T) 

Typically, we set kt  = 1 – ks (or (0,0,0), if opaque, 
where kt is a color value).  

[Generally, for ideal specular surfaces, ks and kt 
are determined by “Fresnel reflection,” which 
depends on angle of incidence and changes the 
polarization of the light.  This is discussed in 
Marschner’s textbook and can be implemented 
for extra credit.]
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Refraction

Snell's law of 
refraction:

ηi sinθi  = ηt sinθt

where ηi , ηt are 
indices of refraction.

In all cases, R and T 
are co-planar with d 
and N.The index of refraction is material dependent.  

It can also vary with wavelength, an effect called 
dispersion that explains the colorful light 
rainbows from prisms.  (We will generally assume 
no dispersion.)
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Total Internal Reflection

The equation for the angle of refraction can be 
computed from Snell's law:

What “bad thing” can happen when ηi > ηt ?

When θt is exactly 90°, we say that θi  has 
achieved the “critical angle” θc .

For θi  > θc , no rays are transmitted, and only 
reflection occurs, a phenomenon known as 
“total internal reflection” or TIR.
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Marschner uses different symbols.  Here is the 
translation between them:

Marschner’s notation
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Ray-tracing pseudocode, revisited
function traceRay (scene, P, d):

(t∩, N, mtrl)  ← scene.intersect (P, d)
Q 🡨 ray (P, d) evaluated at t∩
I = shade (scene, mtrl, Q, N, d)
R = reflectDirection (N, d)

I ← I + mtrl.ks * traceRay (scene, Q, R)
if ray is entering object then

ηi = index_of_air (=1.0003)

ηt = mtrl.index
else

ηi = mtrl.index

ηt = index_of_air (=1.0003)
if (notTIR (                                                       

)) then
T = refractDirection (                                        

)

I ← I + mtrl.kt * traceRay (scene, Q, 
T)

end if
return  I

end function

Q: How do we decide if a ray is entering the 
object?
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Terminating recursion, incl. 
refraction
Q: Now how do you bottom out of recursive ray 

tracing?
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Shadow attenuation (cont’d)

Q: What if there are transparent objects along a 
path to the light source?

We’ll take the view that the color is really only at 
the surface, like a glass object with a colored 
transparency coating on it.  In this case, we 
multiply in the transparency constant, kt, every 
time an object is entered or exited, possibly 
more than once for the same object.  
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Shadow attenuation (cont’d)

Another model would be to treat the glass as 
solidly colored in the interior.  Marschner’s 
textbook describes a the resulting volumetric 
attenuation based on Beer’s Law, which you can 
implement for extra credit.
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Photon mapping

Combine light ray tracing (photon tracing) and 
eye ray tracing:

…to get photon mapping. 

Renderings by Henrik Wann 
Jensen:

http://graphics.ucsd.edu/~henrik/
images/caustics.html
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Normals and shading, reflection, 
and refraction when inside
When a ray is inside an object and intersects the 
object’s surface on the way out, the normal will 
be pointing away from the ray (i.e., the normal 
always points to the outside by default).

You must negate the normal before doing any of 
the shading, reflection, and refraction that 
follows.

Finally, when shading a point inside of an object, 
apply kt  to the ambient component, since that 
“ambient light” had to pass through the object to 
get there in the first place.
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Geometric Aspects
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Intersecting rays with spheres

Now we’ve done everything except figure out what that 
“scene.intersect (P, d)” function does.  

Mostly, it calls each object to find out the t-value at 
which the ray intersects the object.  Let’s start with 
intersecting spheres…

Given:

⬥ The coordinates of a point along a ray passing 
through P  in the direction d are:

⬥ A sphere S of radius r centered at the origin 
defined by the equation:

Find: The t at which the ray intersects S.
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Intersecting rays with spheres
Solution by substitution:

where

Q: What are the solutions of the quadratic equation in t and 
what do they mean?

Q: What is the normal to the sphere at a point (x, y, z) on the 
sphere?

Note: the Trace project only requires you to handle a sphere of 
radius  r = 0.5.  This sphere may be arbitrarily transformed 
when placed in the scene, but everything works out in the 
end.  More later!
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Ray-plane intersection

Next, we will considering intersecting a ray with 
a plane.

To do this, we first need to define the plane 
equation.

Given a point S on a plane with normal N, how 
would we determine if another point X  is on the 
plane? 

(Hint: start by forming the vector X - S.) 

This is the plane equation!
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Ray-plane intersection (cont’d)

Now consider a ray intersecting a plane, where 
the plane equation is:

We can solve for the intersection parameter 
(and thus the point) by substituting X  with the 
ray P + t d:
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Ray-triangle intersection

To intersect with a triangle, we first solve for the 
equation of its supporting plane.

How might we compute the (un-normalized) 
normal?

Given this normal, how would we compute k?

Using these coefficients, we can intersect the ray 
with the triangle to solve for Q.  

Now, we need to decide if Q is inside or outside 
of the triangle…
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3D inside-outside test

One way to do this “inside-outside test,” is to 
see if Q  lies on the left side of each edge as 
we move counterclockwise around the 
triangle.

How might we use cross and products to do 
this?
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Barycentric coordinates

As we’ll see in a moment, it is often useful to 
represent Q as an affine combination of A, B, 
and C:

where:

We call α, β, and γ, the barycentric coordinates 
of Q with respect to A, B, and C.
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Computing barycentric 
coordinates
Given a point Q that is inside of triangle ABC, we 
can solve for Q’s barycentric coordinates in a 
simple way:

How can cross products help here?

In the end, these calculations can be performed 
in the 2D projection as well!
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Improvement: project down to 2D 
first

Without loss of generality, we can make this 
determination after projecting down a 
dimension:

If Q’  is inside of A’B’C’, then Q  is inside of 
ABC.

Why is this projection desirable?  

Which axis should you “project away”?  (Hint: 
consider the triangle normal.)
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Interpolating vertex properties

The barycentric coordinates can also be used to 
interpolate vertex properties such as:

⬥ material properties
⬥ texture coordinates
⬥ normals

For example:
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Phong interpolated normals
Recall the idea of interpolating normal from the 
shading lecture, now updated to allow reflection 
and refraction.

Here’s how it works:

1. Compute normals at the vertices.
2. Interpolate normals and normalize.
3. Shade, reflect, and refract using the 

interpolated normals.

Q: How do we interpolate Na, Nb, Nc to get N?
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As before, we will use the interpolated normal for shading, but a 
problem can arise when using this normal for other ray tracing 
purposes.  Consider:

We see that the interpolated normal Ninterp is of course different 
from the true geometric (triangle) normal NΔ.  Here are a couple 
problems that can arise:

A similar problem can arise for refraction, in which the refracted 
direction T is exiting the object, which is also wrong.  There is no 
“right” answer for handling the discrepancy between normal and 
actual geometry.  

Ninterp   (-d) < 0  -> exiting object 
(wrong!)

. Reflected ray enters the object 
(wrong!)

Interpolated normal in a ray tracer
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We could play it “safe” and always use NΔ, but then we will 
not get nice curved reflections and refractions even when 
these rays are valid.  For Trace, do the following…

Determining when entering/exiting object:

⬥ Use the geometric/true normal (NΔ) when 
deciding whether you are entering/exiting an 
object.

Shading:

⬥ Use  Ninterp  for shading.  

Reflection:

1. Start by using Ninterp to compute reflection 
direction R.

2. If R is (incorrectly) entering the object, then 
re-compute R using NΔ.

Refraction:

3. Start by using Ninterp to check for Total Internal 
Reflection (TIR).  

4. If TIR, then do not cast a refracted ray.
5. Else, use Ninterp to compute refraction direction T.
6. If T is (incorrectly) exiting the object, then use NΔ 

to re-test for TIR and (if no TIR) to re-compute T. 

Interpolated normal in a ray tracer, 
cont’d
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Epsilons

Due to finite precision arithmetic, we do not 
always get the exact intersection at a 
surface.

Q: What kinds of problems might this cause?

Q: How might we resolve this?
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Intersecting with xformed 
geometry
In general, objects will be placed using 
transformations.   What if the object being 
intersected were transformed by a matrix M?

Apply M-1 to the ray first and intersect in object 
(local) coordinates!     Note: do not normalize d’!
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Intersecting with xformed 
geometry
The intersected normal is in object (local) 
coordinates.  How do we transform it to world 
coordinates? 
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Summary

What to take home from this lecture:

⬥ The meanings of all the boldfaced terms.
⬥ Enough to implement basic recursive ray 

tracing.
⬥ How reflection and transmission directions 

are computed.
⬥ How ray-object intersection tests are 

performed on spheres, planes, and 
triangles

⬥ How barycentric coordinates within 
triangles are computed

⬥ How ray epsilons are used.
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Accelerated ray tracing
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Reading

Required:

⬥ Marschner and Shirley, Sections 12.3 
(online handout)

Further reading:

⬥ A. Glassner.  An Introduction to Ray 
Tracing.  Academic Press, 1989. 
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Let’s say you were intersecting a ray with a 
triangle mesh:

Straightforward method 

⬥ intersect the ray with each triangle
⬥ return the intersection with the smallest 

t-value.

Q: How might you speed this up?

Faster ray-polyhedron intersection
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Bounding Volume Hierarchies 
(BVHs)

We can generalize the idea of bounding volume 
acceleration with bounding volume hierarchies 
(BVHs).

Key: build balanced trees with tight bounding 
volumes.
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Uniform spatial subdivision

Another approach is uniform spatial 
subdivision.

Idea:

⬥ Partition space into cells (voxels)
⬥ Associate each primitive with the cells it 

overlaps
⬥ Trace ray through voxel array using fast 

incremental arithmetic to step from cell to 
cell

Q: Given a106 triangle football stadium with a                
106 triangle teapot on one of the seats, would 
a single uniform spatial subdivision be a good 
idea?
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Non-uniform spatial subdivision: 
octrees

Another approach is non-uniform spatial 
subdivision.  One version of this is octrees:
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Non-uniform spatial subdivision: k-d 
trees

Another non-uniform subdivision is k-d                  
(k –dimensional) trees:

If the planes can be non-axis aligned, then 
you get BSP (binary space partitioning) trees.

Various combinations of these ray 
intersections techniques are also possible.  

k-d tree (d = 
2)

k-d tree (d = 
3)

[Image credits: 
Wikipedia.]
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CSG

CSG (constructive solid geometry) is an 
incredibly powerful way to create 
complex scenes from simple primitives.

CSG is a modeling technique; basically, 
we only need to modify ray-object 
intersection.
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CSG Implementation

CSG intersections can be analyzed 
using “Roth diagrams”.

⬥ Maintain description of all intersections 
of ray with primitive

⬥ Functions to combine Roth diagrams 
under CSG operations

An elegant and extremely slow system
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Distribution Ray Tracing

Usually known as “distributed ray tracing”, but it has nothing to do 
with distributed computing

General idea: instead of firing one ray, fire multiple rays in a jittered 
grid

Distributing over different dimensions gives different effects

Example: what if we distribute rays over pixel area?
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Noise

Noise can be thought of as randomness added to the signal.

The eye is relatively insensitive to noise.
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DRT pseudocode

traceImage() looks basically the same, 
except now each pixel records the 
average color of jittered sub-pixel rays.

function traceImage (scene):
for each pixel (i, j) in image do

I(i, j) ← 0
for each sub-pixel id in (i,j) do

s ← pixelToWorld(jitter(i, j, 
id))

p ← COP
u ←(s - p).normalize()
I(i, j) ← I(i, j) + 

traceRay(scene, p, u, id)
end for
I(i, j) 🡨 I(i, j)/numSubPixels

end for
end function

A typical choice is numSubPixels = 4*4.
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DRT pseudocode (cont’d)

Now consider traceRay(), modified to handle (only) 
opaque glossy surfaces:

function traceRay(scene, p, u, id):
(q, N, obj)  ←  intersect (scene, p, u)
I ← shade(…)
R ← jitteredReflectDirection(N, -u, id)

I ← I + obj.kr * traceRay(scene, q, R, id)

return I
end function
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Pre-sampling glossy reflections
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Distributing Reflections

Distributing rays over 
reflection direction gives:
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Distributing Refractions

Distributing rays over transmission direction gives:
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Distributing Over Light Area

Distributing over light 
area gives:
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Distributing Over Aperature

We can fake distribution through a lens by 
choosing a point on a finite aperature and tracing 
through the “in-focus point”.

What does this simulate?
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Distributing Over Time

We can endow models with velocity vectors and 
distribute rays over time.  this gives:
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In general, you can trace rays through a scene and keep track of their id’s to handle 
all of these effects:

Chaining the ray id’s
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Summary

What to take home from this lecture:

⬥ An intuition for how ray tracers can be 
accelerated.


