
1

Ray Tracing

Zoran Popovic
 CSE 457

2

Reading

Required:

⬥ Marschner and Shirley, Ch. 4, Section
13.1-13.2 (online handout)

⬥ Triangle intersection (online handout)

Further reading:

⬥ Shirley errata on syllabus page, needed
if you work from his book instead of the
handout, which has already been
corrected.

⬥ T. Whitted. An improved illumination
model for shaded display.
Communications of the ACM 23(6),
343-349, 1980.

⬥ A. Glassner. An Introduction to Ray
Tracing. Academic Press, 1989.

⬥ K. Turkowski, “Properties of Surface
Normal Transformations,” Graphics
Gems, 1990, pp. 539-547.

3

Geometric optics

Modern theories of light treat it as both a
wave and a particle.

We will take a combined and somewhat
simpler view of light – the view of geometric
optics.

Here are the rules of geometric optics:

⬥ Light is a flow of photons with
wavelengths. We'll call these flows “light
rays.”

⬥ Light rays travel in straight lines in free
space.

⬥ Light rays do not interfere with each
other as they cross.

⬥ Light rays obey the laws of reflection and
refraction.

⬥ Light rays travel from the light sources to
the eye, but the physics is invariant
under path reversal (reciprocity).

4

Eye vs. light ray tracing

Where does light begin?

At the light: light ray tracing (a.k.a., forward
ray tracing or photon tracing)

At the eye: eye ray tracing (a.k.a., backward
ray tracing)

We will generally follow rays from the eye
into the scene.

5

Precursors to ray tracing

Local illumination

⬥ Cast one eye ray, then shade according
to light

Appel (1968)

⬥ Cast one eye ray + one ray to light

6

Whitted ray-tracing algorithm

In 1980, Turner Whitted introduced ray tracing to
the graphics community.

⬥ Combines eye ray tracing + rays to light
⬥ Recursively traces rays

Algorithm:

2. For each pixel, trace a primary ray in direction V to
the first visible surface.

3. For each intersection, trace secondary rays:

⬥ Shadow rays in directions Li to light sources
⬥ Reflected ray in direction R.
⬥ Refracted ray or transmitted ray in direction

T.

7

Whitted algorithm (cont'd)

Let's look at this in stages:

8

Ray casting and local illumination

Now let’s actually build the ray tracer in
stages. We’ll start with ray casting and local
illumination:

9

Direct illumination

A ray is defined by an origin P and a unit
direction d and is parameterized by t > 0 :

r(t) = P + t d

Let I(P, d) be the intensity seen along a ray.
Then:

I(P, d) = Idirect

where

⬥ Idirect is computed from the Blinn-Phong
model

10

Ray-tracing pseudocode

We build a ray traced image by casting rays
through each of the pixels.

function traceImage (scene):
for each pixel (i, j) in image

A = pixelToWorld (i, j)
P = C
d = (A – P)/|| A – P ||
I(i,j) = traceRay (scene, P, d)

end for
end function

function traceRay (scene, P, d):
(t∩, N, mtrl) ← scene.intersect (P, d)
Q 🡨 ray (P, d) evaluated at t∩
I = shade ()
return I

end function

Scen
e

Camer
a

Light
1 Light

2

Object
1

Object
2 Object

3

Xfor
m

Geometry
1

Materials
1

Xfor
m Xfor

m

.

.

.

.

.

.

Xfor
m

11

Shading pseudocode

Next, we need to calculate the color returned by
the shade function.

function shade (mtrl, scene, Q, N, d):
I ← mtrl.ke
for each light source Light do:

atten = Light -> distanceAttenuation (
)

L = Light -> getDirection ()
I ← I + ambient + atten*(diffuse +

specular)
 end for

return I
end function

12

Ray casting with shadows

Now we’ll add shadows by casting shadow
rays:

13

Shading with shadows

To include shadows, we need to modify the
shade function:

function shade (mtrl, scene, Q, N, d):
I ← mtrl.ke
for each light source Light do:

atten = Light ->
distanceAttenuation(Q) *

Light -> shadowAttenuation(
)

L = Light -> getDirection (Q)
I ← I + ambient + atten*(diffuse +

specular)
end for
return I

end function

14

Shadow attenuation

Computing a shadow can be as simple as
checking to see if a ray makes it to the light
source.
For a point light source:

function PointLight ::shadowAttenuation (scene,
Q)

L= getDirection(Q)
(t∩, N, mtrl) ← scene.intersect (Q, L)

Compute tlight
if (t∩ < tlight) then:

atten = (0, 0, 0)
else

atten = (1, 1, 1)
end if
return atten

end function

Note: we will later handle color-filtered
shadowing, so this function needs to return a
color value.

For a directional light, tlight = ∞.

15

Shading in “Trace”

The Trace project uses a version of the
Blinn-Phong shading equation we derived in
class, with two modifications:

⬥ Distance attenuation is clamped to be at
most 1:

⬥ Shadow attenuation Ashadow is included and
is RGB-valued.

Here’s what the shading equation should look
like:

This is the shading equation to use in the
Trace project!

16

Recursive ray tracing with
reflection

Now we’ll add reflection:

17

Shading with reflection

Let I(P, d) be the intensity seen along a ray.
Then:

I (P, d) = Idirect + Ireflected

where

⬥ Idirect is computed from the Blinn-Phong
model, plus shadow attenuation

⬥ Ireflected = ks I(Q, R)

Remember that is a color value.

(Sometimes another variable, kr, is used instead
of ks to allow for separate control of specular light
reflection vs specular interreflection. We will not
do this.)

18

Reflection

Law of reflection:

θi = θr

R is co-planar with d and N.

19

Ray-tracing pseudocode,
revisited

function traceRay (scene, P, d):
(t∩, N, mtrl) ← scene.intersect (P, d)
Q 🡨 ray (P, d) evaluated at t∩
I = shade (scene, mtrl, Q, N, d)
R = reflectDirection ()

I ← I + mtrl.ks * traceRay(scene, Q, R)
return I

end function

20

Terminating recursion

Q: How do you bottom out of recursive ray
tracing?

Possibilities:

21

Whitted ray tracing

Finally, we’ll add refraction, giving us the
Whitted ray tracing model:

22

Shading with reflection and refraction

Let I(P, d) be the intensity seen along a ray.
Then:

I(P, d) = Idirect + Ireflected + Itransmitted

where

⬥ Idirect is computed from the Blinn-Phong
model, plus shadow attenuation

⬥ Ireflected = ks I(Q, R)
⬥ Itransmitted = kt I(Q, T)

Typically, we set kt = 1 – ks (or (0,0,0), if opaque,
where kt is a color value).

[Generally, for ideal specular surfaces, ks and kt
are determined by “Fresnel reflection,” which
depends on angle of incidence and changes the
polarization of the light. This is discussed in
Marschner’s textbook and can be implemented
for extra credit.]

23

Refraction

Snell's law of
refraction:

ηi sinθi = ηt sinθt

where ηi , ηt are
indices of refraction.

In all cases, R and T
are co-planar with d
and N.The index of refraction is material dependent.

It can also vary with wavelength, an effect called
dispersion that explains the colorful light
rainbows from prisms. (We will generally assume
no dispersion.)

24

Total Internal Reflection

The equation for the angle of refraction can be
computed from Snell's law:

What “bad thing” can happen when ηi > ηt ?

When θt is exactly 90°, we say that θi has
achieved the “critical angle” θc .

For θi > θc , no rays are transmitted, and only
reflection occurs, a phenomenon known as
“total internal reflection” or TIR.

25

Marschner uses different symbols. Here is the
translation between them:

Marschner’s notation

26

Ray-tracing pseudocode, revisited
function traceRay (scene, P, d):

(t∩, N, mtrl) ← scene.intersect (P, d)
Q 🡨 ray (P, d) evaluated at t∩
I = shade (scene, mtrl, Q, N, d)
R = reflectDirection (N, d)

I ← I + mtrl.ks * traceRay (scene, Q, R)
if ray is entering object then

ηi = index_of_air (=1.0003)

ηt = mtrl.index
else

ηi = mtrl.index

ηt = index_of_air (=1.0003)
if (notTIR (

)) then
T = refractDirection (

)

I ← I + mtrl.kt * traceRay (scene, Q,
T)

end if
return I

end function

Q: How do we decide if a ray is entering the
object?

27

Terminating recursion, incl.
refraction
Q: Now how do you bottom out of recursive ray

tracing?

28

Shadow attenuation (cont’d)

Q: What if there are transparent objects along a
path to the light source?

We’ll take the view that the color is really only at
the surface, like a glass object with a colored
transparency coating on it. In this case, we
multiply in the transparency constant, kt, every
time an object is entered or exited, possibly
more than once for the same object.

29

Shadow attenuation (cont’d)

Another model would be to treat the glass as
solidly colored in the interior. Marschner’s
textbook describes a the resulting volumetric
attenuation based on Beer’s Law, which you can
implement for extra credit.

30

Photon mapping

Combine light ray tracing (photon tracing) and
eye ray tracing:

…to get photon mapping.

Renderings by Henrik Wann
Jensen:

http://graphics.ucsd.edu/~henrik/
images/caustics.html

31

Normals and shading, reflection,
and refraction when inside
When a ray is inside an object and intersects the
object’s surface on the way out, the normal will
be pointing away from the ray (i.e., the normal
always points to the outside by default).

You must negate the normal before doing any of
the shading, reflection, and refraction that
follows.

Finally, when shading a point inside of an object,
apply kt to the ambient component, since that
“ambient light” had to pass through the object to
get there in the first place.

32

Geometric Aspects

33

Intersecting rays with spheres

Now we’ve done everything except figure out what that
“scene.intersect (P, d)” function does.

Mostly, it calls each object to find out the t-value at
which the ray intersects the object. Let’s start with
intersecting spheres…

Given:

⬥ The coordinates of a point along a ray passing
through P in the direction d are:

⬥ A sphere S of radius r centered at the origin
defined by the equation:

Find: The t at which the ray intersects S.

34

Intersecting rays with spheres
Solution by substitution:

where

Q: What are the solutions of the quadratic equation in t and
what do they mean?

Q: What is the normal to the sphere at a point (x, y, z) on the
sphere?

Note: the Trace project only requires you to handle a sphere of
radius r = 0.5. This sphere may be arbitrarily transformed
when placed in the scene, but everything works out in the
end. More later!

35

Ray-plane intersection

Next, we will considering intersecting a ray with
a plane.

To do this, we first need to define the plane
equation.

Given a point S on a plane with normal N, how
would we determine if another point X is on the
plane?

(Hint: start by forming the vector X - S.)

This is the plane equation!

36

Ray-plane intersection (cont’d)

Now consider a ray intersecting a plane, where
the plane equation is:

We can solve for the intersection parameter
(and thus the point) by substituting X with the
ray P + t d:

37

Ray-triangle intersection

To intersect with a triangle, we first solve for the
equation of its supporting plane.

How might we compute the (un-normalized)
normal?

Given this normal, how would we compute k?

Using these coefficients, we can intersect the ray
with the triangle to solve for Q.

Now, we need to decide if Q is inside or outside
of the triangle…

38

3D inside-outside test

One way to do this “inside-outside test,” is to
see if Q lies on the left side of each edge as
we move counterclockwise around the
triangle.

How might we use cross and products to do
this?

39

Barycentric coordinates

As we’ll see in a moment, it is often useful to
represent Q as an affine combination of A, B,
and C:

where:

We call α, β, and γ, the barycentric coordinates
of Q with respect to A, B, and C.

40

Computing barycentric
coordinates
Given a point Q that is inside of triangle ABC, we
can solve for Q’s barycentric coordinates in a
simple way:

How can cross products help here?

In the end, these calculations can be performed
in the 2D projection as well!

41

Improvement: project down to 2D
first

Without loss of generality, we can make this
determination after projecting down a
dimension:

If Q’ is inside of A’B’C’, then Q is inside of
ABC.

Why is this projection desirable?

Which axis should you “project away”? (Hint:
consider the triangle normal.)

42

Interpolating vertex properties

The barycentric coordinates can also be used to
interpolate vertex properties such as:

⬥ material properties
⬥ texture coordinates
⬥ normals

For example:

43

Phong interpolated normals
Recall the idea of interpolating normal from the
shading lecture, now updated to allow reflection
and refraction.

Here’s how it works:

1. Compute normals at the vertices.
2. Interpolate normals and normalize.
3. Shade, reflect, and refract using the

interpolated normals.

Q: How do we interpolate Na, Nb, Nc to get N?

44

As before, we will use the interpolated normal for shading, but a
problem can arise when using this normal for other ray tracing
purposes. Consider:

We see that the interpolated normal Ninterp is of course different
from the true geometric (triangle) normal NΔ. Here are a couple
problems that can arise:

A similar problem can arise for refraction, in which the refracted
direction T is exiting the object, which is also wrong. There is no
“right” answer for handling the discrepancy between normal and
actual geometry.

Ninterp (-d) < 0 -> exiting object
(wrong!)

. Reflected ray enters the object
(wrong!)

Interpolated normal in a ray tracer

45

We could play it “safe” and always use NΔ, but then we will
not get nice curved reflections and refractions even when
these rays are valid. For Trace, do the following…

Determining when entering/exiting object:

⬥ Use the geometric/true normal (NΔ) when
deciding whether you are entering/exiting an
object.

Shading:

⬥ Use Ninterp for shading.

Reflection:

1. Start by using Ninterp to compute reflection
direction R.

2. If R is (incorrectly) entering the object, then
re-compute R using NΔ.

Refraction:

3. Start by using Ninterp to check for Total Internal
Reflection (TIR).

4. If TIR, then do not cast a refracted ray.
5. Else, use Ninterp to compute refraction direction T.
6. If T is (incorrectly) exiting the object, then use NΔ

to re-test for TIR and (if no TIR) to re-compute T.

Interpolated normal in a ray tracer,
cont’d

46

Epsilons

Due to finite precision arithmetic, we do not
always get the exact intersection at a
surface.

Q: What kinds of problems might this cause?

Q: How might we resolve this?

47

Intersecting with xformed
geometry
In general, objects will be placed using
transformations. What if the object being
intersected were transformed by a matrix M?

Apply M-1 to the ray first and intersect in object
(local) coordinates! Note: do not normalize d’!

48

Intersecting with xformed
geometry
The intersected normal is in object (local)
coordinates. How do we transform it to world
coordinates?

49

Summary

What to take home from this lecture:

⬥ The meanings of all the boldfaced terms.
⬥ Enough to implement basic recursive ray

tracing.
⬥ How reflection and transmission directions

are computed.
⬥ How ray-object intersection tests are

performed on spheres, planes, and
triangles

⬥ How barycentric coordinates within
triangles are computed

⬥ How ray epsilons are used.

50

Accelerated ray tracing

51

Reading

Required:

⬥ Marschner and Shirley, Sections 12.3
(online handout)

Further reading:

⬥ A. Glassner. An Introduction to Ray
Tracing. Academic Press, 1989.

52

Let’s say you were intersecting a ray with a
triangle mesh:

Straightforward method

⬥ intersect the ray with each triangle
⬥ return the intersection with the smallest

t-value.

Q: How might you speed this up?

Faster ray-polyhedron intersection

53

Bounding Volume Hierarchies
(BVHs)

We can generalize the idea of bounding volume
acceleration with bounding volume hierarchies
(BVHs).

Key: build balanced trees with tight bounding
volumes.

54

Uniform spatial subdivision

Another approach is uniform spatial
subdivision.

Idea:

⬥ Partition space into cells (voxels)
⬥ Associate each primitive with the cells it

overlaps
⬥ Trace ray through voxel array using fast

incremental arithmetic to step from cell to
cell

Q: Given a106 triangle football stadium with a
106 triangle teapot on one of the seats, would
a single uniform spatial subdivision be a good
idea?

55

Non-uniform spatial subdivision:
octrees

Another approach is non-uniform spatial
subdivision. One version of this is octrees:

56

Non-uniform spatial subdivision: k-d
trees

Another non-uniform subdivision is k-d
(k –dimensional) trees:

If the planes can be non-axis aligned, then
you get BSP (binary space partitioning) trees.

Various combinations of these ray
intersections techniques are also possible.

k-d tree (d =
2)

k-d tree (d =
3)

[Image credits:
Wikipedia.]

57

57

CSG

CSG (constructive solid geometry) is an
incredibly powerful way to create
complex scenes from simple primitives.

CSG is a modeling technique; basically,
we only need to modify ray-object
intersection.

58

58

CSG Implementation

CSG intersections can be analyzed
using “Roth diagrams”.

⬥ Maintain description of all intersections
of ray with primitive

⬥ Functions to combine Roth diagrams
under CSG operations

An elegant and extremely slow system

59

59

Distribution Ray Tracing

Usually known as “distributed ray tracing”, but it has nothing to do
with distributed computing

General idea: instead of firing one ray, fire multiple rays in a jittered
grid

Distributing over different dimensions gives different effects

Example: what if we distribute rays over pixel area?

60

60

Noise

Noise can be thought of as randomness added to the signal.

The eye is relatively insensitive to noise.

61

61

DRT pseudocode

traceImage() looks basically the same,
except now each pixel records the
average color of jittered sub-pixel rays.

function traceImage (scene):
for each pixel (i, j) in image do

I(i, j) ← 0
for each sub-pixel id in (i,j) do

s ← pixelToWorld(jitter(i, j,
id))

p ← COP
u ←(s - p).normalize()
I(i, j) ← I(i, j) +

traceRay(scene, p, u, id)
end for
I(i, j) 🡨 I(i, j)/numSubPixels

end for
end function

A typical choice is numSubPixels = 4*4.

62

62

DRT pseudocode (cont’d)

Now consider traceRay(), modified to handle (only)
opaque glossy surfaces:

function traceRay(scene, p, u, id):
(q, N, obj) ← intersect (scene, p, u)
I ← shade(…)
R ← jitteredReflectDirection(N, -u, id)

I ← I + obj.kr * traceRay(scene, q, R, id)

return I
end function

63

63

Pre-sampling glossy reflections

64

64

Distributing Reflections

Distributing rays over
reflection direction gives:

65

65

Distributing Refractions

Distributing rays over transmission direction gives:

66

66

Distributing Over Light Area

Distributing over light
area gives:

67

67

Distributing Over Aperature

We can fake distribution through a lens by
choosing a point on a finite aperature and tracing
through the “in-focus point”.

What does this simulate?

68

68

Distributing Over Time

We can endow models with velocity vectors and
distribute rays over time. this gives:

69

69

70

70

In general, you can trace rays through a scene and keep track of their id’s to handle
all of these effects:

Chaining the ray id’s

71

Summary

What to take home from this lecture:

⬥ An intuition for how ray tracers can be
accelerated.

