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OUTLINE

2



REQUIREMENTS

PROJECT REQUIREMENTS
 5 different brush types

 Single Line, Scattered Lines, Scattered Points, Filled Circle, and Scattered Circles

 Sliders controlling brush attributes

 4 ways to control brush direction
 Slider, right mouse button drag, cursor movement, gradient of the image

 Opacity of brush stroke

 Filter kernel

 Mean bilateral filter

 At least one Bell’s worth of extra credit
 1 Bell = 2 Whistles
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IMPRESSIONIST

ENVIRONMENT SETUP (INSTRUCTION)
 Install Compiler

 On Windows, Install Visual Studio Community. Select “Desktop development with C++”.

 On Max, Install Xcode and use Clang compiler

 On Linux, use g++

 Download and Install Open-Source Qt www.qt.io/download
 Select Qt version 5.15.2 or above

 Select an option related to your compiler
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https://docs.google.com/document/d/11mAz4KZzMhQUiRY0DQZ5HDFRklWLYSMlyrm2awG4BmI/edit
http://www.qt.io/download


IMPRESSIONIST

 Clone the Impressionist skeleton code
 git clone git@gitlab.cs.washington.edu:cse457-17au-impressionist/YOUR_REPO.git impressionist

 In Qt Creator, “Open Existing Project” and open Impressionist.pro

GETTING STARTED
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QT

QT
 Enables developers to develop applications with intuitive user interfaces for multiple targets, faster 

than from scratch
 It’s a cross-platform GUI toolkit

 We needed a windowing toolkit to handle window/rendering context creation for OpenGL since we don’t want 
to do that ourselves

 FLTK (what we used to use) is lightweight, but has sparse features that don’t play as well with nicer, newer 
hardware

 Event-Driven (via callbacks as slot and signal pairings)

 Qt Creator IDE - installed with Qt

 mainwindow.cpp has several widget examples

Bad!
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QT

Bad!
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SKELETON CODE

 mainwindow.[h|cpp]
 Handles all of the document related items like loading and saving, selecting 

brushes, and applying filters

 forms/
 Various UI components (the main window, brush & kernel dialog boxes, etc…)

 paintview.[h|cpp]
 Handles the original image side of the window (left side) and the drawing side of 

the window the user paints on (right side)

 brush.[h|cpp]
 The virtual class all brushes are derived from

 pointbrush.[h|cpp]
 An example brush that draws points

SKELETON CODE

8



SKELETON CODE

mainwindow

The data/information about 
brushes, filters, and paint views

forms

Dialog boxes/forms for brushes 
filters, and paint views, etc.

filterpaintview brush

scattered
pointbrushpointbrush circlebrush scattered

linebrush
scattered
circlebrush linebrush
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REQUIREMENTS

PROJECT REQUIREMENTS
 You can search for “REQUIREMENT” to see which part of the code needs to be changed.

 For example,

 You may change any part of the code as you see fit.
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SOME GUIDES



SOME GUIDES

 Good(ish) environment for PC 2D/3D graphics applications

 Extremely well documented… Well not really!
 Lots of beginner tutorials online (like learnopengl.com)

 www.khronos.org/opengl/wiki/
 Keys to understanding how OpenGL works

 But sometimes has unfinished pages

 We will be using it throughout the quarter

 This project uses the basics of OpenGL
 Although you’re welcome to learn more on your own (and we encourage this), the focus of this project is on 2D 

image manipulation

OPENGL
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http://learnopengl.com
http://www.khronos.org/opengl/wiki/


SOME GUIDES

 OpenGL draws primitives - lines, vertices, or polygons - subject to many selectable modes

 It can be modeled as a state machine
 Once a mode is set, it stays there until turned off

 It is procedural - commands are executed in the order they are specified

HOW OPENGL WORKS
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SOME GUIDES

// Let’s draw a filled triangle!
// first, set your color
glm::vec4 color;
color.r = red;
color.g = green;
color.b = blue;
// [OpenGL call to set color]

// Set the vertices
std::vector<Glfloat> vertex = {

Ax, Ay,
Bx, By,
Cx, Cy

};

// Send the vertex data to the GPU buffer
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * vertex.size(), 

vertex.data(), GL_STREAM_DRAW);

// Draw polygon
glDrawArrays(GL_TRIANGLES, 0, 3);

DRAWING A POLYGON
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SOME GUIDES

DRAWING A POLYGON
 A lot going on behind the scenes

 There is a lot of prep code needed to draw
 We need to create a vertex array object that records all the state needed to draw a brush, bound every time we 

draw

 We need to create a vertex buffer object to hold the vertex positions.

 We need to specify how we want to draw these vertices
 (GL_LINES, GL_TRIANGLES, GL_QUADS, … and many more!)

 We need to create a shader program (we did this for you)
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SOME GUIDES

 Let’s make a triangle brush! (this will of course NOT count towards extra credit)

 Make a copy of pointbrush.[h|cpp] and rename to trianglebrush.[h|cpp]
 Right-click pointbrush.h/cpp -> Duplicate File…

 Right-click pointbrush_copy.[h|cpp] -> Rename…

 Rename to “trianglebrush.[h|cpp]”

 They should show up as part of the impressionist project

 Go through the trianglebrush.[h|cpp] code and change all PointBrush labels to 
TriangleBrush labels

CREATING NEW BRUSHES
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SOME GUIDES

CREATING NEW BRUSHES
 Modify the BrushMove method to draw a triangle instead of a point in trianglebrush.cpp

int size = GetSize();
std::vector<Glfloat> vertex = {

pos.x - (size * 0.5f), pos.y + (size * 0.5f),
pos.x + (size * 0.5f), pos.y + (size * 0.5f),
pos.x, pos.y - (size * 0.5f)

};

glBufferData(GL_ARRAY_BUFFER,
sizeof(float) * vertex.size(), 
vertex.data(), GL_STREAM_DRAW);

glDrawArrays(GL_TRIANGLES, 0, 3);
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SOME GUIDES

CREATING NEW BRUSHES
 Go to brush.h and add Triangle to the Brushes enum class

 Open forms/brushdialog.cpp, add “brushes/trianglebrush.h” to the includes. Scroll down 
a bit and add the triangle brush to the selectable brushes.
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SOME GUIDES

 Debugging in Qt
 Use Qt’s built-in debugger (works just like VS, Eclipse, or just about any IDE you’ve used).
 Print out debugging info

 #include <QDebug>

 Use qDebug() when you want to display information
 qDebug() << “debugging info: “ << debugInfo;

 Rebuild the project
 Clean → Make → Build the Project

 Debugging OpenGL
 It might help to check for errors after each call. When it seems like nothing is happening, OpenGL is often 

returning an error message somewhere along the line.
 #include <glinclude.h>

 Use GLCheckError();

Bad!

DEBUGGING
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SOME GUIDES

ALPHA BLENDING
 A weighted average of two colors:

 Suppose

 Then
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SOME GUIDES

EDGE DETECTION & GRADIENTS
 The gradient is a vector that points in the direction of maximum increase of f

 Use the Sobel operator

21



SOME GUIDES

FILTERS
 Remember how filter kernels are applied to an image

 Look at the sample solution. How does it apply a filter?

 What could go wrong?

 What cases do you need to handle?

 We will be looking closely at your filter kernel
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SOME GUIDES

USE GIMP/PHOTOSHOP TO SEE FILTERS IN ACTION
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SOME GUIDES

3X3 MEAN BOX FILTER
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ARTIFACTS



ARTIFACTS

EVERY PROJECT HAS AN ARTIFACT
 Individual (except for final project)

 Due after the project

 Showcase the tool you built
 A good place to demonstrate any bells and whistles you implemented

 In-class voting to determine the best
 Winner gets extra credit!
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GIT TUTORIAL



GIT TUTORIAL

RESOURCES
 Basics for this course:

 https://courses.cs.washington.edu/courses/cse457/21wi/src/help.php

 Official documentation:
 https://git-scm.com/book/en/v2

 git —help <command>
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GIT TUTORIAL

WORKFLOW
 Starting

 Navigate to the directory you want to work in and run
$ git clone git@gitlab.cs.washington.edu:cse457-17au-impressionist/YOUR_REPO.git impressionist

 This clones your repository into a working directory named “impressionist”

 Working 
 You will want to periodically check your code in, either to avoid disaster or to rollback broken code to an earlier 

working version. Run:
$ git add -all
$ git commit -m “added a triangle brush”
$ git push

 If you made any changes remotely, run
$ git pull
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GIT TUTORIAL

SUBMITTING
 Build your executable in Release Mode and test it

 Be sure to have everything properly committed and pushed to your Gitlab repository first
 $ git status

 On branch master?

 Your branch is up-to-date with “origin/master”?

 Nothing to commit, working directory clean?

 Tag it
 $ git tag SUBMIT
$ git push -tags

 Clone your tagged repo int a SEPARATE directory and test running the program
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GIT TUTORIAL

BRANCHES AND MERGE REQUESTS (ADVANCED, OPTIONAL)
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 You can create your own branch and work separately.

 To create a new branch
 $ git checkout –b my-new-branch

 To switch back to the master branch
 $ git checkout master

 Once you are done with your branch, you can create a merge request on Gitlab website.
 You can review changes.
 You will need to resolve any conflicts.
 Then, you can merge to the master branch.

 If you choose to do this, make sure your codes are merged on the master branch, and you
are submitting on the master branch.
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