
IMPRESSIONIST
HELP SESSION

IMPRESSIONIST

 Project Requirements

 Environment Setup

 Skeleton Code

 Some Guides

 Artifacts

 Git Tutorial

OUTLINE

2

REQUIREMENTS

PROJECT REQUIREMENTS
 5 different brush types

 Single Line, Scattered Lines, Scattered Points, Filled Circle, and Scattered Circles

 Sliders controlling brush attributes

 4 ways to control brush direction
 Slider, right mouse button drag, cursor movement, gradient of the image

 Opacity of brush stroke

 Filter kernel

 Mean bilateral filter

 At least one Bell’s worth of extra credit
 1 Bell = 2 Whistles

3

IMPRESSIONIST

ENVIRONMENT SETUP (INSTRUCTION)
 Install Compiler

 On Windows, Install Visual Studio Community. Select “Desktop development with C++”.

 On Max, Install Xcode and use Clang compiler

 On Linux, use g++

 Download and Install Open-Source Qt www.qt.io/download
 Select Qt version 5.15.2 or above

 Select an option related to your compiler

4

https://docs.google.com/document/d/11mAz4KZzMhQUiRY0DQZ5HDFRklWLYSMlyrm2awG4BmI/edit
http://www.qt.io/download

IMPRESSIONIST

 Clone the Impressionist skeleton code
 git clone git@gitlab.cs.washington.edu:cse457-17au-impressionist/YOUR_REPO.git impressionist

 In Qt Creator, “Open Existing Project” and open Impressionist.pro

GETTING STARTED

5

QT

QT
 Enables developers to develop applications with intuitive user interfaces for multiple targets, faster

than from scratch
 It’s a cross-platform GUI toolkit

 We needed a windowing toolkit to handle window/rendering context creation for OpenGL since we don’t want
to do that ourselves

 FLTK (what we used to use) is lightweight, but has sparse features that don’t play as well with nicer, newer
hardware

 Event-Driven (via callbacks as slot and signal pairings)

 Qt Creator IDE - installed with Qt

 mainwindow.cpp has several widget examples

Bad!

6

QT

Bad!

7

SKELETON CODE

 mainwindow.[h|cpp]
 Handles all of the document related items like loading and saving, selecting

brushes, and applying filters

 forms/
 Various UI components (the main window, brush & kernel dialog boxes, etc…)

 paintview.[h|cpp]
 Handles the original image side of the window (left side) and the drawing side of

the window the user paints on (right side)

 brush.[h|cpp]
 The virtual class all brushes are derived from

 pointbrush.[h|cpp]
 An example brush that draws points

SKELETON CODE

8

SKELETON CODE

mainwindow

The data/information about
brushes, filters, and paint views

forms

Dialog boxes/forms for brushes
filters, and paint views, etc.

filterpaintview brush

scattered
pointbrushpointbrush circlebrush scattered

linebrush
scattered
circlebrush linebrush

9

REQUIREMENTS

PROJECT REQUIREMENTS
 You can search for “REQUIREMENT” to see which part of the code needs to be changed.

 For example,

 You may change any part of the code as you see fit.

10

SOME GUIDES

SOME GUIDES

 Good(ish) environment for PC 2D/3D graphics applications

 Extremely well documented… Well not really!
 Lots of beginner tutorials online (like learnopengl.com)

 www.khronos.org/opengl/wiki/
 Keys to understanding how OpenGL works

 But sometimes has unfinished pages

 We will be using it throughout the quarter

 This project uses the basics of OpenGL
 Although you’re welcome to learn more on your own (and we encourage this), the focus of this project is on 2D

image manipulation

OPENGL

12

http://learnopengl.com
http://www.khronos.org/opengl/wiki/

SOME GUIDES

 OpenGL draws primitives - lines, vertices, or polygons - subject to many selectable modes

 It can be modeled as a state machine
 Once a mode is set, it stays there until turned off

 It is procedural - commands are executed in the order they are specified

HOW OPENGL WORKS

13

SOME GUIDES

// Let’s draw a filled triangle!
// first, set your color
glm::vec4 color;
color.r = red;
color.g = green;
color.b = blue;
// [OpenGL call to set color]

// Set the vertices
std::vector<Glfloat> vertex = {

Ax, Ay,
Bx, By,
Cx, Cy

};

// Send the vertex data to the GPU buffer
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * vertex.size(),

vertex.data(), GL_STREAM_DRAW);

// Draw polygon
glDrawArrays(GL_TRIANGLES, 0, 3);

DRAWING A POLYGON

14

SOME GUIDES

DRAWING A POLYGON
 A lot going on behind the scenes

 There is a lot of prep code needed to draw
 We need to create a vertex array object that records all the state needed to draw a brush, bound every time we

draw

 We need to create a vertex buffer object to hold the vertex positions.

 We need to specify how we want to draw these vertices
 (GL_LINES, GL_TRIANGLES, GL_QUADS, … and many more!)

 We need to create a shader program (we did this for you)

15

SOME GUIDES

 Let’s make a triangle brush! (this will of course NOT count towards extra credit)

 Make a copy of pointbrush.[h|cpp] and rename to trianglebrush.[h|cpp]
 Right-click pointbrush.h/cpp -> Duplicate File…

 Right-click pointbrush_copy.[h|cpp] -> Rename…

 Rename to “trianglebrush.[h|cpp]”

 They should show up as part of the impressionist project

 Go through the trianglebrush.[h|cpp] code and change all PointBrush labels to
TriangleBrush labels

CREATING NEW BRUSHES

16

SOME GUIDES

CREATING NEW BRUSHES
 Modify the BrushMove method to draw a triangle instead of a point in trianglebrush.cpp

int size = GetSize();
std::vector<Glfloat> vertex = {

pos.x - (size * 0.5f), pos.y + (size * 0.5f),
pos.x + (size * 0.5f), pos.y + (size * 0.5f),
pos.x, pos.y - (size * 0.5f)

};

glBufferData(GL_ARRAY_BUFFER,
sizeof(float) * vertex.size(),
vertex.data(), GL_STREAM_DRAW);

glDrawArrays(GL_TRIANGLES, 0, 3);

17

SOME GUIDES

CREATING NEW BRUSHES
 Go to brush.h and add Triangle to the Brushes enum class

 Open forms/brushdialog.cpp, add “brushes/trianglebrush.h” to the includes. Scroll down
a bit and add the triangle brush to the selectable brushes.

18

SOME GUIDES

 Debugging in Qt
 Use Qt’s built-in debugger (works just like VS, Eclipse, or just about any IDE you’ve used).
 Print out debugging info

 #include <QDebug>

 Use qDebug() when you want to display information
 qDebug() << “debugging info: “ << debugInfo;

 Rebuild the project
 Clean → Make → Build the Project

 Debugging OpenGL
 It might help to check for errors after each call. When it seems like nothing is happening, OpenGL is often

returning an error message somewhere along the line.
 #include <glinclude.h>

 Use GLCheckError();

Bad!

DEBUGGING

19

SOME GUIDES

ALPHA BLENDING
 A weighted average of two colors:

 Suppose

 Then

20

SOME GUIDES

EDGE DETECTION & GRADIENTS
 The gradient is a vector that points in the direction of maximum increase of f

 Use the Sobel operator

21

SOME GUIDES

FILTERS
 Remember how filter kernels are applied to an image

 Look at the sample solution. How does it apply a filter?

 What could go wrong?

 What cases do you need to handle?

 We will be looking closely at your filter kernel

22

SOME GUIDES

USE GIMP/PHOTOSHOP TO SEE FILTERS IN ACTION

23

SOME GUIDES

3X3 MEAN BOX FILTER

24

ARTIFACTS

ARTIFACTS

EVERY PROJECT HAS AN ARTIFACT
 Individual (except for final project)

 Due after the project

 Showcase the tool you built
 A good place to demonstrate any bells and whistles you implemented

 In-class voting to determine the best
 Winner gets extra credit!

26

GIT TUTORIAL

GIT TUTORIAL

RESOURCES
 Basics for this course:

 https://courses.cs.washington.edu/courses/cse457/21wi/src/help.php

 Official documentation:
 https://git-scm.com/book/en/v2

 git —help <command>

28

http://courses.cs.washington.edu/courses/cse457/21wi/src/help.php
https://git-scm.com/book/en/v2

GIT TUTORIAL

WORKFLOW
 Starting

 Navigate to the directory you want to work in and run
$ git clone git@gitlab.cs.washington.edu:cse457-17au-impressionist/YOUR_REPO.git impressionist

 This clones your repository into a working directory named “impressionist”

 Working
 You will want to periodically check your code in, either to avoid disaster or to rollback broken code to an earlier

working version. Run:
$ git add -all
$ git commit -m “added a triangle brush”
$ git push

 If you made any changes remotely, run
$ git pull

29

GIT TUTORIAL

SUBMITTING
 Build your executable in Release Mode and test it

 Be sure to have everything properly committed and pushed to your Gitlab repository first
 $ git status

 On branch master?

 Your branch is up-to-date with “origin/master”?

 Nothing to commit, working directory clean?

 Tag it
 $ git tag SUBMIT
$ git push -tags

 Clone your tagged repo int a SEPARATE directory and test running the program

30

GIT TUTORIAL

BRANCHES AND MERGE REQUESTS (ADVANCED, OPTIONAL)

31

 You can create your own branch and work separately.

 To create a new branch
 $ git checkout –b my-new-branch

 To switch back to the master branch
 $ git checkout master

 Once you are done with your branch, you can create a merge request on Gitlab website.
 You can review changes.
 You will need to resolve any conflicts.
 Then, you can merge to the master branch.

 If you choose to do this, make sure your codes are merged on the master branch, and you
are submitting on the master branch.

	IMPRESSIONIST
	Outline
	Project Requirements
	Environment Setup (instruction)
	Getting Started
	Qt
	Slide Number 7
	Skeleton Code
	Slide Number 9
	Project Requirements
	Some Guides
	OpenGL
	How OpenGL Works
	Drawing A Polygon
	Drawing A Polygon
	CREATING NEW Brushes
	CREATING NEW Brushes
	CREATING NEW Brushes
	Debugging
	Alpha blending
	edge detection & gradients
	filters
	Use gimp/photoshop to see filters in action
	3x3 mean box filter
	Artifacts
	every project has an artifact
	Git Tutorial
	Resources
	Workflow
	Submitting
	BRANCHES and Merge Requests (Advanced, Optional)

