
IMPRESSIONIST
HELP SESSION

IMPRESSIONIST

 Project Requirements

 Environment Setup

 Skeleton Code

 Some Guides

 Artifacts

 Git Tutorial

OUTLINE

2

REQUIREMENTS

PROJECT REQUIREMENTS
 5 different brush types

 Single Line, Scattered Lines, Scattered Points, Filled Circle, and Scattered Circles

 Sliders controlling brush attributes

 4 ways to control brush direction
 Slider, right mouse button drag, cursor movement, gradient of the image

 Opacity of brush stroke

 Filter kernel

 Mean bilateral filter

 At least one Bell’s worth of extra credit
 1 Bell = 2 Whistles

3

IMPRESSIONIST

ENVIRONMENT SETUP (INSTRUCTION)
 Install Compiler

 On Windows, Install Visual Studio Community. Select “Desktop development with C++”.

 On Max, Install Xcode and use Clang compiler

 On Linux, use g++

 Download and Install Open-Source Qt www.qt.io/download
 Select Qt version 5.15.2 or above

 Select an option related to your compiler

4

https://docs.google.com/document/d/11mAz4KZzMhQUiRY0DQZ5HDFRklWLYSMlyrm2awG4BmI/edit
http://www.qt.io/download

IMPRESSIONIST

 Clone the Impressionist skeleton code
 git clone git@gitlab.cs.washington.edu:cse457-17au-impressionist/YOUR_REPO.git impressionist

 In Qt Creator, “Open Existing Project” and open Impressionist.pro

GETTING STARTED

5

QT

QT
 Enables developers to develop applications with intuitive user interfaces for multiple targets, faster

than from scratch
 It’s a cross-platform GUI toolkit

 We needed a windowing toolkit to handle window/rendering context creation for OpenGL since we don’t want
to do that ourselves

 FLTK (what we used to use) is lightweight, but has sparse features that don’t play as well with nicer, newer
hardware

 Event-Driven (via callbacks as slot and signal pairings)

 Qt Creator IDE - installed with Qt

 mainwindow.cpp has several widget examples

Bad!

6

QT

Bad!

7

SKELETON CODE

 mainwindow.[h|cpp]
 Handles all of the document related items like loading and saving, selecting

brushes, and applying filters

 forms/
 Various UI components (the main window, brush & kernel dialog boxes, etc…)

 paintview.[h|cpp]
 Handles the original image side of the window (left side) and the drawing side of

the window the user paints on (right side)

 brush.[h|cpp]
 The virtual class all brushes are derived from

 pointbrush.[h|cpp]
 An example brush that draws points

SKELETON CODE

8

SKELETON CODE

mainwindow

The data/information about
brushes, filters, and paint views

forms

Dialog boxes/forms for brushes
filters, and paint views, etc.

filterpaintview brush

scattered
pointbrushpointbrush circlebrush scattered

linebrush
scattered
circlebrush linebrush

9

REQUIREMENTS

PROJECT REQUIREMENTS
 You can search for “REQUIREMENT” to see which part of the code needs to be changed.

 For example,

 You may change any part of the code as you see fit.

10

SOME GUIDES

SOME GUIDES

 Good(ish) environment for PC 2D/3D graphics applications

 Extremely well documented… Well not really!
 Lots of beginner tutorials online (like learnopengl.com)

 www.khronos.org/opengl/wiki/
 Keys to understanding how OpenGL works

 But sometimes has unfinished pages

 We will be using it throughout the quarter

 This project uses the basics of OpenGL
 Although you’re welcome to learn more on your own (and we encourage this), the focus of this project is on 2D

image manipulation

OPENGL

12

http://learnopengl.com
http://www.khronos.org/opengl/wiki/

SOME GUIDES

 OpenGL draws primitives - lines, vertices, or polygons - subject to many selectable modes

 It can be modeled as a state machine
 Once a mode is set, it stays there until turned off

 It is procedural - commands are executed in the order they are specified

HOW OPENGL WORKS

13

SOME GUIDES

// Let’s draw a filled triangle!
// first, set your color
glm::vec4 color;
color.r = red;
color.g = green;
color.b = blue;
// [OpenGL call to set color]

// Set the vertices
std::vector<Glfloat> vertex = {

Ax, Ay,
Bx, By,
Cx, Cy

};

// Send the vertex data to the GPU buffer
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * vertex.size(),

vertex.data(), GL_STREAM_DRAW);

// Draw polygon
glDrawArrays(GL_TRIANGLES, 0, 3);

DRAWING A POLYGON

14

SOME GUIDES

DRAWING A POLYGON
 A lot going on behind the scenes

 There is a lot of prep code needed to draw
 We need to create a vertex array object that records all the state needed to draw a brush, bound every time we

draw

 We need to create a vertex buffer object to hold the vertex positions.

 We need to specify how we want to draw these vertices
 (GL_LINES, GL_TRIANGLES, GL_QUADS, … and many more!)

 We need to create a shader program (we did this for you)

15

SOME GUIDES

 Let’s make a triangle brush! (this will of course NOT count towards extra credit)

 Make a copy of pointbrush.[h|cpp] and rename to trianglebrush.[h|cpp]
 Right-click pointbrush.h/cpp -> Duplicate File…

 Right-click pointbrush_copy.[h|cpp] -> Rename…

 Rename to “trianglebrush.[h|cpp]”

 They should show up as part of the impressionist project

 Go through the trianglebrush.[h|cpp] code and change all PointBrush labels to
TriangleBrush labels

CREATING NEW BRUSHES

16

SOME GUIDES

CREATING NEW BRUSHES
 Modify the BrushMove method to draw a triangle instead of a point in trianglebrush.cpp

int size = GetSize();
std::vector<Glfloat> vertex = {

pos.x - (size * 0.5f), pos.y + (size * 0.5f),
pos.x + (size * 0.5f), pos.y + (size * 0.5f),
pos.x, pos.y - (size * 0.5f)

};

glBufferData(GL_ARRAY_BUFFER,
sizeof(float) * vertex.size(),
vertex.data(), GL_STREAM_DRAW);

glDrawArrays(GL_TRIANGLES, 0, 3);

17

SOME GUIDES

CREATING NEW BRUSHES
 Go to brush.h and add Triangle to the Brushes enum class

 Open forms/brushdialog.cpp, add “brushes/trianglebrush.h” to the includes. Scroll down
a bit and add the triangle brush to the selectable brushes.

18

SOME GUIDES

 Debugging in Qt
 Use Qt’s built-in debugger (works just like VS, Eclipse, or just about any IDE you’ve used).
 Print out debugging info

 #include <QDebug>

 Use qDebug() when you want to display information
 qDebug() << “debugging info: “ << debugInfo;

 Rebuild the project
 Clean → Make → Build the Project

 Debugging OpenGL
 It might help to check for errors after each call. When it seems like nothing is happening, OpenGL is often

returning an error message somewhere along the line.
 #include <glinclude.h>

 Use GLCheckError();

Bad!

DEBUGGING

19

SOME GUIDES

ALPHA BLENDING
 A weighted average of two colors:

 Suppose

 Then

20

SOME GUIDES

EDGE DETECTION & GRADIENTS
 The gradient is a vector that points in the direction of maximum increase of f

 Use the Sobel operator

21

SOME GUIDES

FILTERS
 Remember how filter kernels are applied to an image

 Look at the sample solution. How does it apply a filter?

 What could go wrong?

 What cases do you need to handle?

 We will be looking closely at your filter kernel

22

SOME GUIDES

USE GIMP/PHOTOSHOP TO SEE FILTERS IN ACTION

23

SOME GUIDES

3X3 MEAN BOX FILTER

24

ARTIFACTS

ARTIFACTS

EVERY PROJECT HAS AN ARTIFACT
 Individual (except for final project)

 Due after the project

 Showcase the tool you built
 A good place to demonstrate any bells and whistles you implemented

 In-class voting to determine the best
 Winner gets extra credit!

26

GIT TUTORIAL

GIT TUTORIAL

RESOURCES
 Basics for this course:

 https://courses.cs.washington.edu/courses/cse457/21wi/src/help.php

 Official documentation:
 https://git-scm.com/book/en/v2

 git —help <command>

28

http://courses.cs.washington.edu/courses/cse457/21wi/src/help.php
https://git-scm.com/book/en/v2

GIT TUTORIAL

WORKFLOW
 Starting

 Navigate to the directory you want to work in and run
$ git clone git@gitlab.cs.washington.edu:cse457-17au-impressionist/YOUR_REPO.git impressionist

 This clones your repository into a working directory named “impressionist”

 Working
 You will want to periodically check your code in, either to avoid disaster or to rollback broken code to an earlier

working version. Run:
$ git add -all
$ git commit -m “added a triangle brush”
$ git push

 If you made any changes remotely, run
$ git pull

29

GIT TUTORIAL

SUBMITTING
 Build your executable in Release Mode and test it

 Be sure to have everything properly committed and pushed to your Gitlab repository first
 $ git status

 On branch master?

 Your branch is up-to-date with “origin/master”?

 Nothing to commit, working directory clean?

 Tag it
 $ git tag SUBMIT
$ git push -tags

 Clone your tagged repo int a SEPARATE directory and test running the program

30

GIT TUTORIAL

BRANCHES AND MERGE REQUESTS (ADVANCED, OPTIONAL)

31

 You can create your own branch and work separately.

 To create a new branch
 $ git checkout –b my-new-branch

 To switch back to the master branch
 $ git checkout master

 Once you are done with your branch, you can create a merge request on Gitlab website.
 You can review changes.
 You will need to resolve any conflicts.
 Then, you can merge to the master branch.

 If you choose to do this, make sure your codes are merged on the master branch, and you
are submitting on the master branch.

	IMPRESSIONIST
	Outline
	Project Requirements
	Environment Setup (instruction)
	Getting Started
	Qt
	Slide Number 7
	Skeleton Code
	Slide Number 9
	Project Requirements
	Some Guides
	OpenGL
	How OpenGL Works
	Drawing A Polygon
	Drawing A Polygon
	CREATING NEW Brushes
	CREATING NEW Brushes
	CREATING NEW Brushes
	Debugging
	Alpha blending
	edge detection & gradients
	filters
	Use gimp/photoshop to see filters in action
	3x3 mean box filter
	Artifacts
	every project has an artifact
	Git Tutorial
	Resources
	Workflow
	Submitting
	BRANCHES and Merge Requests (Advanced, Optional)

