Affine transformations

Zoran Popovic CSE 457
Winter 2021

Reading

Optional reading:

- Angel and Shreiner: 3.1, 3.7-3.11
- Marschner and Shirley: 2.3, 2.4.1-2.4.4,

$$
\text { 6.1.1-6.1.4, 6.2.1, } 6.3
$$

Further reading:

- Angel, the rest of Chapter 3
- Foley, et al, Chapter 5.1-5.5.
- David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, 2 ${ }^{\text {nd }}$ Ed., McGrawHill, New York, 1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one space to points in another: $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\boldsymbol{f}(x, y, z)$.

These transformations can be very simple, such as scaling each coordinate, or complex, such as nonlinear twists and bends.

We'll focus on transformations that can be represented easily with matrix operations.

Vector representation

We can represent a point, $\mathbf{p}=(x, y)$, in the plane or $\mathbf{p}=(x, y, z)$ in 3D space:

Canonical axes
RIGHTV HANDED COORD SYSTHEM

$$
\begin{aligned}
& v=v_{x} \hat{x} \\
& {\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] }
\end{aligned} \stackrel{v_{g} \underset{y}{\hat{g}}+v_{z} \cdot \tilde{z}}{\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \begin{aligned}
& {\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]} \\
& \\
& \\
& =\left[\begin{array}{l}
v_{x} \\
v_{g} \\
v_{z}
\end{array}\right]
\end{aligned}
$$

Vector length and dot products

$$
\begin{aligned}
& v=\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right] \quad\|v\|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}} . \\
& \mu \cdot V=v_{x} \cdot \mu_{x}+v_{y} \mu_{y}+v_{z} \cdot \mu_{z} \\
& \mu \cdot v \stackrel{?}{=} v \cdot \mu \\
& \mu=\left[\begin{array}{l}
\mu_{x} \\
\mu_{y} \\
\mu_{z}
\end{array}\right] \\
& \hat{\mu}=\frac{\mu}{\|\mu\|} \quad\|\hat{\mu}\|=1 \\
& \hat{v}=\frac{V}{\|\mu\|} \quad \hat{\mu} \cdot \hat{V}=\cos (\theta) \\
& \mu \cdot v=\left[\begin{array}{lll}
\mu_{x} & \mu_{g} & u_{z}
\end{array}\right] \cdot\left[\begin{array}{c}
v_{x} \\
v_{g} \\
v_{z}
\end{array}\right]=\mu^{\top} v \\
& v \cdot v=\|v\|^{2} \\
& \mu \cdot V=\|\mu\| \cdot\|v\| \cdot \cos (\theta) \\
& \mu \cdot V=0 \Rightarrow \mu \perp v \\
& \|u\|,\|r\|=0
\end{aligned}
$$

Vector cross products

$$
\begin{aligned}
& \mu \times v(\operatorname{con} x-y \text { plane })=\left[\begin{array}{l}
0 \\
0 \\
\mu_{x} v_{y}-\mu_{y} v_{x}
\end{array}\right] \\
& \mu \times v \stackrel{?}{=}-v \times \mu \\
& (\mu \times v) \cdot \mu=0 \\
& (\mu \times v) \cdot v=0 \\
& \|\mu \times v\|=\|u\| \cdot\|v\|-|\sin (\theta)|=\operatorname{Ara}(Z \pi, v) \\
& \text { Area }\left(\Delta_{\mu, v}\right)=\frac{1}{2}\|\mu \times v\|
\end{aligned}
$$

Representation, cont.

$$
\begin{aligned}
& (A B)^{\top}=B^{+} A^{\top} \\
& (A B)^{-1}=B^{-1} A^{-1}
\end{aligned}
$$

We can represent a 2-D transformation M by a matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

$$
\begin{aligned}
& \text { matrix } \\
& (A B)^{-2} A B_{\uparrow}=I_{1} \\
& (A B)^{-2} A \uparrow=3 B^{-2} \uparrow^{-1}=B^{-2} A^{-1}
\end{aligned}
$$

If \mathbf{p} is a column vector, M goes on the left:

$$
\begin{gathered}
\mathbf{p}^{\prime}=M \mathbf{p} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ccc}
a x & t & b y \\
c x & +d y
\end{array}\right]}
\end{gathered}
$$

If \mathbf{p} is a row vector, M^{T} goes on the right:

$$
\mathbf{p}^{\prime}=\mathbf{p} M^{T}
$$

$$
\left[\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
x & \mathbf{p}^{\prime}=\mathbf{p} M & {\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]=[a x+b y}
\end{array}\right]=\left[\begin{array}{ll}
& \\
x
\end{array}\right]
$$

$$
c x+d g]
$$

We will usecolumn vectors.

Two-dimensional transformations

Here's all you get with a 2×2 transformation matrix M :

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

So:

$$
\frac{x^{\prime}=a x+b y}{y^{\prime}=c x+d y}
$$

We will develop some intimacy with the elements $a, b, c, d \ldots$

Identity

Suppose we choose $a=d=1, b=c=0$:

- Gives the identity matrix:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Doesn't move the points at all

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y^{\prime}
\end{aligned}
$$

Scaling

Suppose we set $b=c=0$, but let a and d take on any positive value:

- Gives a scaling matrix:
$\left[\begin{array}{cc}(a) & 0 \\ 0 & (d)\end{array}\right]$
- Provides differential (non-uniform) scaling in x and y :

$$
\begin{aligned}
& x^{\prime}=a x \\
& y^{\prime}=d y
\end{aligned}
$$

Reflection, Minor

Suppose we keep $b=c=0$, but let either a or d go negative.

Examples:

Shear

Now let's leave $a=d=1$ and experiment with $b \ldots$
The matrix

$$
\left[\begin{array}{ll}
1 & b \\
1 & b \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

gives:

$$
\begin{aligned}
& x^{\prime}=x+b y \\
& y^{\prime}=y
\end{aligned} \quad\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x+y \\
y
\end{array}\right]
$$

Effect on unit square
Let's see how a general 2×2 transformation M affects the unit square:

$$
\begin{aligned}
& {\left[\begin{array}{llll}
a \\
c & \hat{b} \\
d
\end{array}\right]-\mathbf{q}\left(\begin{array}{lll}
\mathbf{r} & \mathbf{s} & \mathbf{t}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{q}^{\prime} & \mathbf{r}^{\prime} & \mathbf{s}^{\prime} & \mathbf{t}^{\prime}
\end{array}\right]} \\
& \left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \underbrace{\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]}]=\left[\begin{array}{l}
0 \\
0
\end{array}\left(\begin{array}{l}
a \\
c
\end{array}\binom{a+b}{c+d}\left(\begin{array}{l}
b \\
d
\end{array}\right]\right]\right.
\end{aligned}
$$

Effect on unit square, cont.

Observe:

- Origin invariant under M
- M can be determined just by knowing how the corners $(1,0)$ and $(0,1)$ are mapped
- a and d give x - and y-scaling
- b and c give x - and y-shearing

Rotation

From our observations of the effect on the unit square, it should be easy to write down a matrix for "rotation about the origin":

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]} \\
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]}
\end{aligned}
$$

Thus,

$$
M=R(\theta)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Limitations of the $\mathbf{2 \times 2}$ matrix

A 2×2 linear transformation matrix allows

- Scaling
- Rotation
- Reflection
- Shearing

Q: What important operation does that leave out?
TRANSLATION

Affine transformations

In order to incorporate the idea that both the basis and the origin can change, we augment the linear space \mathbf{A} with an origin \mathbf{t}

An affine transformation then is expressed as:

$$
\mathbf{p}^{\prime}=\mathbf{A}\left[\begin{array}{l}
x \\
y
\end{array}\right]+\mathbf{t}
$$

How can we write an affine transformation with matrices?

Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a third component to every point:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
t=\left[\begin{array}{l}
t x \\
\operatorname{tg}
\end{array}\right]
$$

Adding the third " w " component puts us in homogenous coordinates.

And then transform with a 3×3 matrix:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=T(\mathbf{t})\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0
\end{array} \left\lvert\, \begin{array}{cc}
x_{x} \\
0 & 1
\end{array} t_{y}\left[\begin{array}{l}
x \\
0
\end{array}\right]\right.\right.
$$

Anatomy of an affine matrix

The addition of translation to linear transformations gives us affine transformations.

In matrix form, 2D affine transformations always look like this:

2D affine transformations always have a bottom row of [lllll 001$]$.

An"affine point" is a "linear point" with an added w-coordinate which is always 1 :

$$
\mathbf{P}_{\mathrm{aff}}=\left[\begin{array}{c}
\mathbf{p}_{\mathrm{lin}} \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

Applying an affine transformation gives another affine point:

$$
M \mathbf{p}_{\mathrm{aff}}=\left\lfloor\begin{array}{c}
A \mathbf{p}_{\mathrm{lin}}+\mathbf{t} \\
1
\end{array}\right\rfloor
$$

Rotation about arbitrary points
Until now, we have only considered rotation about the origin.

$$
R(\theta)=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

With homogeneous coordinates, you can specify a rotation by β, about any point $\mathbf{q}=\left[q_{\mathrm{x}} q_{\mathrm{y}}\right]^{\mathrm{T}}$ with a matrix.

Let's do this with rotation and translation matrices of the form $\mathrm{R}(\theta)$ and $\mathrm{T}(\mathbf{t})$, respectively.

$$
T(t)=\left[\begin{array}{lll}
1 & 0 & t x \\
0 & 1 & t g \\
0 & 0 & 1
\end{array}\right]
$$

1. Translate \mathbf{q} to origin
2. Rotate
3. Translate back

$$
\cdot n(p) \quad(1)
$$

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D ones.

For example, scaling:

$$
\left.\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\widehat{s_{x}} & 0 & 0 & 0 \\
0 & \overparen{s_{x}} & 0 & 0 \\
0 & 0 & \widehat{s_{z}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Translation in 3D

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lllc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & \underbrace{}_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotation in 3D

$$
R=[U \vee \omega]
$$

These are the rotations about the canonical axes:

$$
R_{x}(\alpha)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha & 0 \\
0 & \sin \alpha & \cos \alpha & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{array}{ll}
\mu \cdot \mu=1 & \mu \cdot \nu=0 \\
v \cdot v=1 & v ; \omega=0
\end{array}
$$

$$
\begin{array}{ll}
v \cdot v=1 & V \cdot w=0 \\
w \cdot w=1 & V \cdot v=0
\end{array}
$$

$$
R_{y}(\beta)=\left[\begin{array}{llll}
\cos \beta & 0 & \sin \beta & 0
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
\cos \beta & 0 & \sin \beta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \beta & 0 & \cos \beta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Use right hand rule

$$
R_{z}(\gamma)=\left[\begin{array}{cccc}
\cos \gamma & -\sin \gamma & 0 & 0 \\
\sin \gamma & \cos \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
R^{T R}=I
$$

A general rotation can be specified in terms of a product of these three matrices. How else might you specify a rotation?

Shearing in 3D

Shearing is also more complicated. Here is one example:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cc|ccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

We call this a shear with respect to the $x-z$ plane.

Properties of affine transformations

Here are some useful properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Midpoints map to midpoints (in fact, ratios are always preserved)

Summary

What to take away from this lecture:

- All the names in boldface.
- How points and transformations are represented.
- How to compute lengths, dot products, and cross products of vectors, and what their geometrical meanings are.
- What all the elements of a 2×2 transformation matrix do and how these generalize to 3×3 transformations.
- What homogeneous coordinates are and how they work for affine transformations.
- How to concatenate transformations.
- The mathematical properties of affine transformations.

