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Reading

Jain, Kasturi, Schunck, Machine Vision. McGraw-Hill, 

1995. Sections 4.2-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-

5.4.  [online handout]
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What is an image?

We can think of an image as a function, f, from R2

to R:

 f (x, y) gives the intensity of a channel at 

position (x, y)

 Realistically, we expect the image only to be 

defined over a rectangle, with a finite range:

• f : [a, b ] x [c, d ] → [0,1]

A color image is just three functions pasted 

together.  We can write this as a “vector-valued” 

function: 

f (x, y) =

r(x, y)

g(x, y)

b(x, y)
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Images as functions

x

y
f(x,y)
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What is a digital image?

In computer graphics, we usually operate on 

digital (discrete) images:

 Sample the space on a regular grid

 Quantize each sample (round to nearest 

integer)

If our samples are D apart, we can write this as:

f [i, j] = Quantize{ f (iD, jD)}

i

f [i, j] j
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Image processing

An image processing operation typically defines a 

new image g in terms of an existing image f.

The simplest operations are those that transform 

each pixel in isolation.  These pixel-to-pixel 

operations can be written:

Examples: threshold, RGB → grayscale

Note: a typical choice for mapping to grayscale is 

to apply the YIQ television matrix and keep the Y.

g(x, y) = t( f (x, y))

Y

I

Q
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0.299 0.587 0.114

0.596 -0.275 -0.321

0.212 -0.523 0.311
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Noise

Image processing is also useful for noise reduction and 

edge enhancement.  We will focus on these applications 

for the remainder of the lecture…

Common types of noise:

 Salt and pepper noise: contains random 

occurrences of black and white pixels

 Impulse noise: contains random occurrences of 

white pixels

 Gaussian noise: variations in intensity drawn from a 

Gaussian normal distribution
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Ideal noise reduction
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Ideal noise reduction
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Practical noise reduction

How can we “smooth” away noise in a single 

image?

Is there a more abstract way to represent this sort 

of operation? Of course there is!

f [i]

g[i]

i

i
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One of the most common methods for filtering an 

image is called discrete convolution.  (We will just call 

this “convolution” from here on.)

In 1D, convolution is defined as:

“Flipping” the kernel (i.e., working with h[-i]) is 

mathematically important.  In practice, though, you can 

assume kernels are pre-flipped unless I say otherwise.

Discrete convolution

f [k]

h[k]

g[i]

i

k

k
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Convolution in 2D

In two dimensions, convolution becomes:

Again, “flipping” the kernel (i.e., working with h[-i, -j]) 

is mathematically important.  In practice, though, you 

can assume kernels are pre-flipped unless I say 

otherwise.
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Convolving in 2D

Since f and h are defined over finite regions, we can 
write them out as two-dimensional arrays:

 This is not matrix multiplication.

 For color images, filter each color channel 

separately.

 The filter is assumed to be zero outside its 

boundary.

128 54 9 78 100

145 98 240 233 86

89 177 246 228 127

67 90 255 148 95

106 111 128 84 172

221 154 97 69 94

0.1

0.1

0.1

0.1

0.2

0.1

0.1

0.1

0.1

Image f [i, j]

Filter h[i, j]
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Convolving in 2D

Since f and h are defined over finite regions, we can 
write them out as two-dimensional arrays:

 This is not matrix multiplication.

 For color images, filter each color channel 

separately.

 The filter is assumed to be zero outside its 

boundary.

128 54 9 78 100

145 98 240 233 86

89 177 246 228 127

67 90 255 148 95

106 111 128 84 172

221 154 97 69 94

Image f [i, j]

Filter h[i, j]

X 0.1

X 0.1

X 0.1

X 0.1

X 0.2

X 0.1

X 0.1

X 0.1

X 0.1
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Suppose  f is a flat / constant image, with all pixel 
values equal to some value C.

Q: What will be the value of each pixel after 
filtering?

Q: How do we avoid getting a value brighter or 
darker than the original image?

Normalization

C C C C C

C C C C C

C C C C C

C C C C C

C C C C C

C C C C C

X h13

X h12

X h11

X h23

X h22

X h21

X h33

X h32

X h31
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Mean filters

How can we represent our noise-reducing 

averaging as a convolution filter (know as a mean 

filter)?
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Effect of mean filters
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Gaussian filters

Gaussian filters weigh pixels based on their 

distance from the center of the convolution filter.  

In particular:

This does a decent job of blurring noise while 

preserving features of the image.

What parameter controls the width of the 
Gaussian?  

What happens to the image as the Gaussian filter 

kernel gets wider?

What is the constant C ?  What should we set it to?

h[i, j] =
e-(i2+ j2 )/(2s 2 )

C
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Effect of Gaussian filters
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Median filters

A median filter operates over an N x N region by 

selecting the median intensity in the region.

What advantage does a median filter have over a 

mean filter?

Is a median filter a kind of convolution?

g[i]

1

f [i]

i

i
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Effect of median filters
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Comparison: Gaussian noise
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Comparison: salt and pepper noise
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Mean bilateral filtering

Bilateral filtering is a method to average together 

nearby samples only if they are similar in value.

This is a “mean bilateral filter” where you take the 

average of everything that is both within the 

domain footprint (w x w in 2D) and range height 

(h).  You must sum up all pixels you find in that 

“box” and then divide by the number of pixels.

Q: What happens as the range size becomes large?

Q: Will bilateral filtering take care of impulse noise?

“domain”

“range”
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2D Mean bilateral filtering

Now consider filtering an image with a bilateral 

filter with a 3x3 domain and a total range height of 

40 (i.e., range of [-20, 20] from center pixel).

205 198 190 203 210 192

191 203 191 194 206 98

210 197 204 101 98 103

205 199 104 97 94 107

190 92 106 106 100 108

110 91 101 100 96 99
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Color bilateral filtering

Finally, for color, we simply compute range 

distance in R, G, B space as the length of the 

vector between the two color vectors.  Consider 

colors at different pixels:

The range distance between them is then:

After selecting pixels that are within the color 

distance range, you then separately average each 

color channel of those pixels to compute the final 

color.

C
1
=

R
1

G
1

B
1
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Gaussian bilateral filtering

We can also change the filter to something “nicer” 

like Gaussians.  Let’s go back to 1D:

Where sd is the width of the domain Gaussian and 

sr is the width of the range Gaussian.

Note that we can write a 2D Gaussian as a product 

of two Gaussians (i.e., it is a separable function):

where i indexes the spatial domain and r is the 

range difference.  This would make a round 

Gaussian.  We can make it elliptical by having 

different s ’s for domain and range:

h[i,r] ~ e-(i2+r2 )/(2s 2 ) = e-i2 /(2s 2 )e-r2 /(2s 2 )

h[i,r] ~ e
-i2 /(2s

d

2 )
e

-r2 /(2s
r

2 )

~ h
d
(i) h

r
(r)
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The math: 1D bilateral filtering

Recall that convolution looked like this:

with normalization (sum of filter values):

This was just domain filtering.

The bilateral filter is similar, but includes both 

domain and range filtering:

with normalization (sum of filter values):

Note that with regular convolution, we pre-

compute C once, but for bilateral filtering, we must 

compute it at each pixel location where it’s applied.

C = h
d

[i - k]
k

å  h
r
( f [i]- f [k])

g[i] =
1

C
f [k]h

d
[i- k]

k

å  h
r
( f [i]- f [k])

g[i] =
1

C
f [k]hd [i- k]

k

å

C = hd [i - k]
k

å  
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The math: 2D bilateral filtering

In 2D, bilateral filtering generalizes to having a 2D 

domain, but still a 1D range:

And the normalization becomes (sum of filter 

values):

For Gaussian filtering, the new form looks like this:

Note that Gaussian bilateral filtering is slow 

without some optimization, and some 

optimizations can be fairly complicated (if 

worthwhile).  Fortunately, simple mean bilateral 

filtering is fairly fast and works well in practice.

g[i, j] =
1

C
f [k,ℓ ]h

d
[i - k, j - ℓ ]

k ,ℓ

å  h
r
( f [i, j]- f [k,ℓ ])

C = h
d

[i - k, j - ℓ ]
k ,ℓ

å  h
r
( f [i, j]- f [k,ℓ ])

h[i, j,r] ~ e
-(i2+ j

2
)/(2s

d

2 )
e

-r2 /(2s
r

2 )

~ h
d
(i, j) h

r
(r)
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Input

s
d
=

 2
s

d
=

 6
sr = 0.1 sr = 0.25

Paris, et al. SIGGRAPH course notes 2007
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Edge detection

One of the most important uses of image 

processing is edge detection:

 Really easy for humans

 Really difficult for computers

 Fundamental in computer vision

 Important in many graphics applications
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What is an edge?

Q: How might you detect an edge in 1D?

Q: How might you approximate this edge measure 

with discrete samples?

Q: How could you do it with discrete convolution?

f (x)

x



33

Gradients

The gradient is the 2D equivalent of the derivative:

Properties of the gradient

 It’s a vector

 Points in the direction of maximum increase of  

f

 Magnitude is rate of increase

Note: use atan2(y,x)to compute the angle of the 

gradient (or any 2D vector).

How can we approximate the gradient in a discrete 

image?

Ñf (x, y) =
¶f

¶x
,
¶f

¶y

æ

è
ç

ö

ø
÷

f [i, j] f [i +1, j]

f [i, j +1] f [i +1, j +1]
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Less than ideal edges
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Steps in edge detection

Edge detection algorithms typically proceed in 

three or four steps:

 Filtering: cut down on noise

 Enhancement: amplify the difference between 

edges and non-edges

 Detection: use a threshold operation

 Localization (optional): estimate geometry of 

edges as 1D contours that can pass between 

pixels
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Edge enhancement

A popular gradient filter is the Sobel operator:

We can then compute the magnitude of the vector

Note that these operators are conveniently “pre-

flipped” for convolution, so you can directly slide 

these across an image without flipping first.
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Results of Sobel edge detection
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Second derivative operators

The Sobel operator can produce thick edges.  
Ideally, we’re looking for infinitely thin boundaries.

An alternative approach is to look for local extrema 
in the first derivative: places where the change in 
the gradient is highest.

Q: A peak in the first derivative corresponds to 
what   in the second derivative?
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Constructing a second derivative filter

We can construct a second derivative filter from the first 

derivative.

First, one can show that convolution has some convenient 

properties.  Given functions a, b, c:

The “flipping” of the kernel is needed for associativity.  Now 

let’s use associativity to construct our second derivative filter…

  Commutative:   a*b = b*a

     Associative:   a*b( )*c = a* b*c( )
     Distributive:   a* b+ c( ) = a*b+ a*c
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Constructing a second derivative filter

0 -1 1

1 -1 0

The second derivative filter is then: hx*hx

hx

hx
~
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Localization with the Laplacian

An equivalent measure of the second derivative in 

2D is the Laplacian:

Using the same arguments we used to compute the 

gradient filters, we can derive a Laplacian filter to 
be:

(The symbol D is often used to refer to the discrete

Laplacian filter.)

Zero crossings in a Laplacian filtered image can be 

used to localize edges.

Ñ2 f (x, y) =
¶2 f

¶x2
+
¶2 f

¶y2

D =

0 1 0

1 -4 1

0 1 0
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Localization with the Laplacian

Original Smoothed

Laplacian (+128)
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Sharpening with the Laplacian

Original Laplacian  (+128)

Original + Laplacian Original - Laplacian

Why does the sign make a difference?

How can you write the filter that makes the sharpened 

image?
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Summary

What you should take away from this lecture:

 The meanings of all the boldfaced terms.

 How noise reduction is done

 How discrete convolution filtering works

 The effect of mean, Gaussian, and median 

filters

 What an image gradient is and how it can be 

computed

 How edge detection is done

 What the Laplacian image is and how it is 

used in either edge detection or image 

sharpening


