
1

Image processing

Zoran Popovic
CSE 457

Autumn 2021

2

Reading

Jain, Kasturi, Schunck, Machine Vision. McGraw-Hill,

1995. Sections 4.2-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-

5.4. [online handout]

3

What is an image?

We can think of an image as a function, f, from R2

to R:

 f (x, y) gives the intensity of a channel at

position (x, y)

 Realistically, we expect the image only to be

defined over a rectangle, with a finite range:

• f : [a, b] x [c, d] → [0,1]

A color image is just three functions pasted

together. We can write this as a “vector-valued”

function:

f (x, y) =

r(x, y)

g(x, y)

b(x, y)

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

4

Images as functions

x

y
f(x,y)

5

What is a digital image?

In computer graphics, we usually operate on

digital (discrete) images:

 Sample the space on a regular grid

 Quantize each sample (round to nearest

integer)

If our samples are D apart, we can write this as:

f [i, j] = Quantize{ f (iD, jD)}

i

f [i, j] j

6

Image processing

An image processing operation typically defines a

new image g in terms of an existing image f.

The simplest operations are those that transform

each pixel in isolation. These pixel-to-pixel

operations can be written:

Examples: threshold, RGB → grayscale

Note: a typical choice for mapping to grayscale is

to apply the YIQ television matrix and keep the Y.

g(x, y) = t(f (x, y))

Y

I

Q

é

ë

ê
ê
ê

ù

û

ú
ú
ú
=

0.299 0.587 0.114

0.596 -0.275 -0.321

0.212 -0.523 0.311

é

ë

ê
ê
ê

ù

û

ú
ú
ú

R

G

B

é

ë

ê
ê
ê

ù

û

ú
ú
ú

7

Noise

Image processing is also useful for noise reduction and

edge enhancement. We will focus on these applications

for the remainder of the lecture…

Common types of noise:

 Salt and pepper noise: contains random

occurrences of black and white pixels

 Impulse noise: contains random occurrences of

white pixels

 Gaussian noise: variations in intensity drawn from a

Gaussian normal distribution

8

Ideal noise reduction

9

Ideal noise reduction

10

Practical noise reduction

How can we “smooth” away noise in a single

image?

Is there a more abstract way to represent this sort

of operation? Of course there is!

f [i]

g[i]

i

i

11

One of the most common methods for filtering an

image is called discrete convolution. (We will just call

this “convolution” from here on.)

In 1D, convolution is defined as:

“Flipping” the kernel (i.e., working with h[-i]) is

mathematically important. In practice, though, you can

assume kernels are pre-flipped unless I say otherwise.

Discrete convolution

f [k]

h[k]

g[i]

i

k

k

12

Convolution in 2D

In two dimensions, convolution becomes:

Again, “flipping” the kernel (i.e., working with h[-i, -j])

is mathematically important. In practice, though, you

can assume kernels are pre-flipped unless I say

otherwise.

13

Convolving in 2D

Since f and h are defined over finite regions, we can
write them out as two-dimensional arrays:

 This is not matrix multiplication.

 For color images, filter each color channel

separately.

 The filter is assumed to be zero outside its

boundary.

128 54 9 78 100

145 98 240 233 86

89 177 246 228 127

67 90 255 148 95

106 111 128 84 172

221 154 97 69 94

0.1

0.1

0.1

0.1

0.2

0.1

0.1

0.1

0.1

Image f [i, j]

Filter h[i, j]

14

Convolving in 2D

Since f and h are defined over finite regions, we can
write them out as two-dimensional arrays:

 This is not matrix multiplication.

 For color images, filter each color channel

separately.

 The filter is assumed to be zero outside its

boundary.

128 54 9 78 100

145 98 240 233 86

89 177 246 228 127

67 90 255 148 95

106 111 128 84 172

221 154 97 69 94

Image f [i, j]

Filter h[i, j]

X 0.1

X 0.1

X 0.1

X 0.1

X 0.2

X 0.1

X 0.1

X 0.1

X 0.1

15

Suppose f is a flat / constant image, with all pixel
values equal to some value C.

Q: What will be the value of each pixel after
filtering?

Q: How do we avoid getting a value brighter or
darker than the original image?

Normalization

C C C C C

C C C C C

C C C C C

C C C C C

C C C C C

C C C C C

X h13

X h12

X h11

X h23

X h22

X h21

X h33

X h32

X h31

16

Mean filters

How can we represent our noise-reducing

averaging as a convolution filter (know as a mean

filter)?

17

Effect of mean filters

18

Gaussian filters

Gaussian filters weigh pixels based on their

distance from the center of the convolution filter.

In particular:

This does a decent job of blurring noise while

preserving features of the image.

What parameter controls the width of the
Gaussian?

What happens to the image as the Gaussian filter

kernel gets wider?

What is the constant C ? What should we set it to?

h[i, j] =
e-(i2+ j2)/(2s 2)

C

19

Effect of Gaussian filters

20

Median filters

A median filter operates over an N x N region by

selecting the median intensity in the region.

What advantage does a median filter have over a

mean filter?

Is a median filter a kind of convolution?

g[i]

1

f [i]

i

i

21

Effect of median filters

22

Comparison: Gaussian noise

23

Comparison: salt and pepper noise

24

Mean bilateral filtering

Bilateral filtering is a method to average together

nearby samples only if they are similar in value.

This is a “mean bilateral filter” where you take the

average of everything that is both within the

domain footprint (w x w in 2D) and range height

(h). You must sum up all pixels you find in that

“box” and then divide by the number of pixels.

Q: What happens as the range size becomes large?

Q: Will bilateral filtering take care of impulse noise?

“domain”

“range”

25

2D Mean bilateral filtering

Now consider filtering an image with a bilateral

filter with a 3x3 domain and a total range height of

40 (i.e., range of [-20, 20] from center pixel).

205 198 190 203 210 192

191 203 191 194 206 98

210 197 204 101 98 103

205 199 104 97 94 107

190 92 106 106 100 108

110 91 101 100 96 99

26

Color bilateral filtering

Finally, for color, we simply compute range

distance in R, G, B space as the length of the

vector between the two color vectors. Consider

colors at different pixels:

The range distance between them is then:

After selecting pixels that are within the color

distance range, you then separately average each

color channel of those pixels to compute the final

color.

C
1
=

R
1

G
1

B
1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

C
2

=

R
2

G
2

B
2

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

27

Gaussian bilateral filtering

We can also change the filter to something “nicer”

like Gaussians. Let’s go back to 1D:

Where sd is the width of the domain Gaussian and

sr is the width of the range Gaussian.

Note that we can write a 2D Gaussian as a product

of two Gaussians (i.e., it is a separable function):

where i indexes the spatial domain and r is the

range difference. This would make a round

Gaussian. We can make it elliptical by having

different s ’s for domain and range:

h[i,r] ~ e-(i2+r2)/(2s 2) = e-i2 /(2s 2)e-r2 /(2s 2)

h[i,r] ~ e
-i2 /(2s

d

2)
e

-r2 /(2s
r

2)

~ h
d
(i) h

r
(r)

28

The math: 1D bilateral filtering

Recall that convolution looked like this:

with normalization (sum of filter values):

This was just domain filtering.

The bilateral filter is similar, but includes both

domain and range filtering:

with normalization (sum of filter values):

Note that with regular convolution, we pre-

compute C once, but for bilateral filtering, we must

compute it at each pixel location where it’s applied.

C = h
d

[i - k]
k

å h
r
(f [i]- f [k])

g[i] =
1

C
f [k]h

d
[i- k]

k

å h
r
(f [i]- f [k])

g[i] =
1

C
f [k]hd [i- k]

k

å

C = hd [i - k]
k

å

29

The math: 2D bilateral filtering

In 2D, bilateral filtering generalizes to having a 2D

domain, but still a 1D range:

And the normalization becomes (sum of filter

values):

For Gaussian filtering, the new form looks like this:

Note that Gaussian bilateral filtering is slow

without some optimization, and some

optimizations can be fairly complicated (if

worthwhile). Fortunately, simple mean bilateral

filtering is fairly fast and works well in practice.

g[i, j] =
1

C
f [k,ℓ]h

d
[i - k, j - ℓ]

k ,ℓ

å h
r
(f [i, j]- f [k,ℓ])

C = h
d

[i - k, j - ℓ]
k ,ℓ

å h
r
(f [i, j]- f [k,ℓ])

h[i, j,r] ~ e
-(i2+ j

2
)/(2s

d

2)
e

-r2 /(2s
r

2)

~ h
d
(i, j) h

r
(r)

30

Input

s
d
=

 2
s

d
=

 6
sr = 0.1 sr = 0.25

Paris, et al. SIGGRAPH course notes 2007

31

Edge detection

One of the most important uses of image

processing is edge detection:

 Really easy for humans

 Really difficult for computers

 Fundamental in computer vision

 Important in many graphics applications

32

What is an edge?

Q: How might you detect an edge in 1D?

Q: How might you approximate this edge measure

with discrete samples?

Q: How could you do it with discrete convolution?

f (x)

x

33

Gradients

The gradient is the 2D equivalent of the derivative:

Properties of the gradient

 It’s a vector

 Points in the direction of maximum increase of

f

 Magnitude is rate of increase

Note: use atan2(y,x)to compute the angle of the

gradient (or any 2D vector).

How can we approximate the gradient in a discrete

image?

Ñf (x, y) =
¶f

¶x
,
¶f

¶y

æ

è
ç

ö

ø
÷

f [i, j] f [i +1, j]

f [i, j +1] f [i +1, j +1]

34

Less than ideal edges

35

Steps in edge detection

Edge detection algorithms typically proceed in

three or four steps:

 Filtering: cut down on noise

 Enhancement: amplify the difference between

edges and non-edges

 Detection: use a threshold operation

 Localization (optional): estimate geometry of

edges as 1D contours that can pass between

pixels

36

Edge enhancement

A popular gradient filter is the Sobel operator:

We can then compute the magnitude of the vector

Note that these operators are conveniently “pre-

flipped” for convolution, so you can directly slide

these across an image without flipping first.

37

Results of Sobel edge detection

38

Second derivative operators

The Sobel operator can produce thick edges.
Ideally, we’re looking for infinitely thin boundaries.

An alternative approach is to look for local extrema
in the first derivative: places where the change in
the gradient is highest.

Q: A peak in the first derivative corresponds to
what in the second derivative?

39

Constructing a second derivative filter

We can construct a second derivative filter from the first

derivative.

First, one can show that convolution has some convenient

properties. Given functions a, b, c:

The “flipping” of the kernel is needed for associativity. Now

let’s use associativity to construct our second derivative filter…

 Commutative: a*b = b*a

 Associative: a*b()*c = a* b*c()
 Distributive: a* b+ c() = a*b+ a*c

40

Constructing a second derivative filter

0 -1 1

1 -1 0

The second derivative filter is then: hx*hx

hx

hx
~

41

Localization with the Laplacian

An equivalent measure of the second derivative in

2D is the Laplacian:

Using the same arguments we used to compute the

gradient filters, we can derive a Laplacian filter to
be:

(The symbol D is often used to refer to the discrete

Laplacian filter.)

Zero crossings in a Laplacian filtered image can be

used to localize edges.

Ñ2 f (x, y) =
¶2 f

¶x2
+
¶2 f

¶y2

D =

0 1 0

1 -4 1

0 1 0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

42

Localization with the Laplacian

Original Smoothed

Laplacian (+128)

43

Sharpening with the Laplacian

Original Laplacian (+128)

Original + Laplacian Original - Laplacian

Why does the sign make a difference?

How can you write the filter that makes the sharpened

image?

44

Summary

What you should take away from this lecture:

 The meanings of all the boldfaced terms.

 How noise reduction is done

 How discrete convolution filtering works

 The effect of mean, Gaussian, and median

filters

 What an image gradient is and how it can be

computed

 How edge detection is done

 What the Laplacian image is and how it is

used in either edge detection or image

sharpening

