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Reading

Optional:

 Angel, sections 8.1 – 8.6, 8.8 

Further reading:

 OpenGL Programming Guide, chapter 3
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Symbols and instances

Most graphics APIs support a few geometric 

primitives:

 spheres

 cubes

 cylinders

These symbols are instanced using an instance 

transformation.

Q: What is the matrix for the instance 

transformation above?
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3D Example:  A robot arm

Let’s build a robot arm out of a cylinder and two 

cuboids, with the following 3 degrees of freedom:

 Base rotates about its vertical axis by 

 Upper arm rotates in its xy-plane by 

 Lower arm rotates in its xy-plane by 

(Note that the angles are set to zero in the figures on 

the right; i.e., the parts are shown in their “default” 

positions.)

Suppose we have transformations Rx( ), Ry( ), Rz( ), T( , 

, ).

Q:  What matrix do we use to transform the base?

Q:  What matrix product for the upper arm?

Q:  What matrix product for the lower arm?

[Angel, 2011]
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An alternative interpretation is that we are taking 

the original coordinate frames…

…and translating and rotating them into place:

3D Example:  A robot arm
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From parts to model to viewer
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Robot arm implementation

The robot arm can be displayed by keeping a 
global matrix and computing it at each step:

Matrix M, M_model, M_view;

main()

{

. . .

M_view = compute_view_transform();

robot_arm();

. . .

}

robot_arm()

{

M_model = R_y(theta);

M = M_view*M_model;

base();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi);

M = M_view*M_model;

upper_arm();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi)*T(0,h2,0)*R_z(psi);

M = M_view*M_model;

lower_arm();

}

Do the matrix computations seem wasteful?
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Instead of recalculating the global matrix each time, 
we can just update it in place by concatenating 
matrices on the right:

Matrix M_modelview;

main()

{

. . .

M_modelview = compute_view_transform();

robot_arm();

. . .

}

robot_arm()

{

M_modelview *= R_y(theta);

base();

M_modelview *= T(0,h1,0)*R_z(phi);

upper_arm();

M_modelview *= T(0,h2,0)*R_z(psi);

lower_arm();

}

Robot arm implementation, better
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Hierarchical modeling

Hierarchical models can be composed of instances 

using trees or DAGs:

 edges contain geometric transformations

 nodes contain geometry (and possibly 

drawing attributes)

We will use trees for hierarchical models.

How might we 

draw the tree for 

the robot arm?
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A complex example: human figure

Q:  What’s the most sensible way to traverse this 

tree?
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Using canonical primitives

Consider building the robot arm again, but this time the 

building blocks are canonical primitives like a unit 

cylinder and a unit cube.

What additional transformations are needed?

What does the hierarchy look like now? 

Base

Lower arm

Upper arm

Canonical 

primitives

Unit cylinder Unit cube
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Animation

The above examples are called articulated models:

 rigid parts

 connected by joints

They can be animated by specifying the joint 

angles (or other display parameters) as functions of 

time.
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Key-frame animation

The most common method for character animation 

in production is key-frame animation.

 Each joint specified at various key frames

(not necessarily the same as other joints)

 System does interpolation or in-betweening

Doing this well requires:

 A way of smoothly interpolating key frames:  

splines

 A good interactive system

 A lot of skill on the part of the animator
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Scene graphs

The idea of hierarchical modeling can be extended 

to an entire scene, encompassing:

 many different objects

 lights

 camera position

This is called a scene tree or scene graph.
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Summary

Here’s what you should take home from this 

lecture:

 All the boldfaced terms.

 How primitives can be instanced and 

composed to create hierarchical models using 

geometric transforms.

 How the notion of a model tree or DAG can 

be extended to entire scenes.

 How OpenGL transformations can be used in 

hierarchical modeling.

 How keyframe animation works.


