
1

Hierarchical Modeling

Zoran Popovic

CSE 457

Spring 2019

2

Reading

Optional:

 Angel, sections 8.1 – 8.6, 8.8

Further reading:

 OpenGL Programming Guide, chapter 3

3

Symbols and instances

Most graphics APIs support a few geometric

primitives:

 spheres

 cubes

 cylinders

These symbols are instanced using an instance

transformation.

Q: What is the matrix for the instance

transformation above?

4

3D Example: A robot arm

Let’s build a robot arm out of a cylinder and two

cuboids, with the following 3 degrees of freedom:

 Base rotates about its vertical axis by

 Upper arm rotates in its xy-plane by

 Lower arm rotates in its xy-plane by

(Note that the angles are set to zero in the figures on

the right; i.e., the parts are shown in their “default”

positions.)

Suppose we have transformations Rx(), Ry(), Rz(), T(,

,).

Q: What matrix do we use to transform the base?

Q: What matrix product for the upper arm?

Q: What matrix product for the lower arm?

[Angel, 2011]

Base

Upper arm

Lower arm

5

An alternative interpretation is that we are taking

the original coordinate frames…

…and translating and rotating them into place:

3D Example: A robot arm

yUA

xLAyLA

zLA

xUA

zUA

xB

yB

zB

Base

Upper arm

Lower arm

6

From parts to model to viewer

7

Robot arm implementation

The robot arm can be displayed by keeping a
global matrix and computing it at each step:

Matrix M, M_model, M_view;

main()

{

. . .

M_view = compute_view_transform();

robot_arm();

. . .

}

robot_arm()

{

M_model = R_y(theta);

M = M_view*M_model;

base();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi);

M = M_view*M_model;

upper_arm();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi)*T(0,h2,0)*R_z(psi);

M = M_view*M_model;

lower_arm();

}

Do the matrix computations seem wasteful?

8

Instead of recalculating the global matrix each time,
we can just update it in place by concatenating
matrices on the right:

Matrix M_modelview;

main()

{

. . .

M_modelview = compute_view_transform();

robot_arm();

. . .

}

robot_arm()

{

M_modelview *= R_y(theta);

base();

M_modelview *= T(0,h1,0)*R_z(phi);

upper_arm();

M_modelview *= T(0,h2,0)*R_z(psi);

lower_arm();

}

Robot arm implementation, better

9

Hierarchical modeling

Hierarchical models can be composed of instances

using trees or DAGs:

 edges contain geometric transformations

 nodes contain geometry (and possibly

drawing attributes)

We will use trees for hierarchical models.

How might we

draw the tree for

the robot arm?

10

A complex example: human figure

Q: What’s the most sensible way to traverse this

tree?

11

Using canonical primitives

Consider building the robot arm again, but this time the

building blocks are canonical primitives like a unit

cylinder and a unit cube.

What additional transformations are needed?

What does the hierarchy look like now?

Base

Lower arm

Upper arm

Canonical

primitives

Unit cylinder Unit cube

12

Animation

The above examples are called articulated models:

 rigid parts

 connected by joints

They can be animated by specifying the joint

angles (or other display parameters) as functions of

time.

13

Key-frame animation

The most common method for character animation

in production is key-frame animation.

 Each joint specified at various key frames

(not necessarily the same as other joints)

 System does interpolation or in-betweening

Doing this well requires:

 A way of smoothly interpolating key frames:

splines

 A good interactive system

 A lot of skill on the part of the animator

14

Scene graphs

The idea of hierarchical modeling can be extended

to an entire scene, encompassing:

 many different objects

 lights

 camera position

This is called a scene tree or scene graph.

Scene

Camera

Light1
Light2

Object1

Object2
Object3

Xform

Geometry1Materials1
Xform

Xform

.

.

.

.

.

.

Xform

15

Summary

Here’s what you should take home from this

lecture:

 All the boldfaced terms.

 How primitives can be instanced and

composed to create hierarchical models using

geometric transforms.

 How the notion of a model tree or DAG can

be extended to entire scenes.

 How OpenGL transformations can be used in

hierarchical modeling.

 How keyframe animation works.

