Parametric surfaces

Adriana Schulz CSE 457 Fall 2020

Reading

Optional reading:

- Angel and Shreiner readings for "Parametric Curves" lecture, with emphasis on 10.1.2, 10.1.3, 10.1.5, 10.6.2, 10.7.3, 10.9.4.
- Marschner and Shirley, 2.5.

Further reading

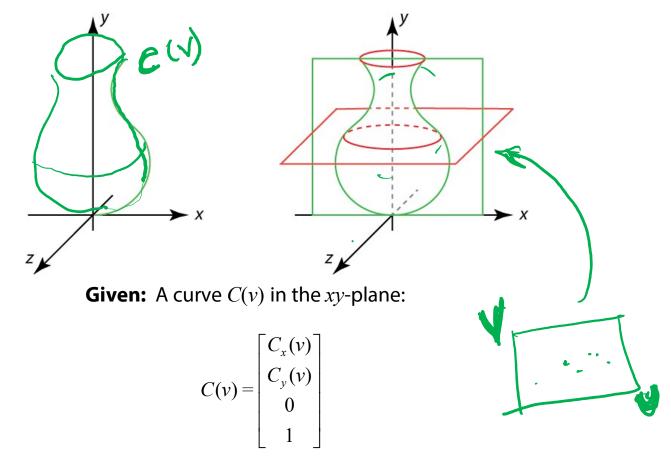
• Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 1987.

Mathematical surface representations

Z

Explicit z = f(x, y) (a.k.a., a "height field") • what if the curve isn't a function, like a sphere? Ζ ŦX. y Implicit g(x, y, z) = 0Holl the Isocontour from "marching cubes" Isocontour from "marching squares" • Parametric S(u, v) = (x(u, v), y(u, v), z(u, v))Ζ • For the sphere: TK $x(u, v) = r \cos(2\pi v) \sin(pu)$ $\overline{y}(u, v) = r \sin(2\pi v) \sin(\pi u)$ $\overline{z(u,v)} = r \cos(\pi u)$ As with curves, we'll focus on parametric surfaces.

Constructing surfaces of revolution



Let $R_{y}(\theta)$ be a rotation about the *y*-axis.

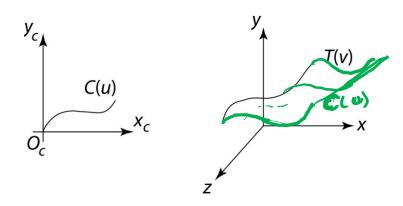
Find: A surface S(u,v) which is C(v) rotated about the *y*-axis, where $u,v \in [0, 1]$.

Solution: $S(N,V) = Rg(2\pi v) c(V)$

General sweep surfaces

The surface of revolution is a special case of a swept surface.

Idea: Trace out surface S(u, v) by moving a **profile** curve C(u) along a **trajectory curve** T(v).



More specifically:

- Suppose that C(u) lies in an (x_c, y_c) coordinate system with origin O_c.
- For every point along *T*(*v*), lay *C*(*u*) so that *O*_c coincides with *T*(*v*).

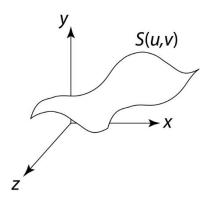
Orientation

The big issue:

• How to orient *C*(*u*) as it moves along *T*(*v*) ?

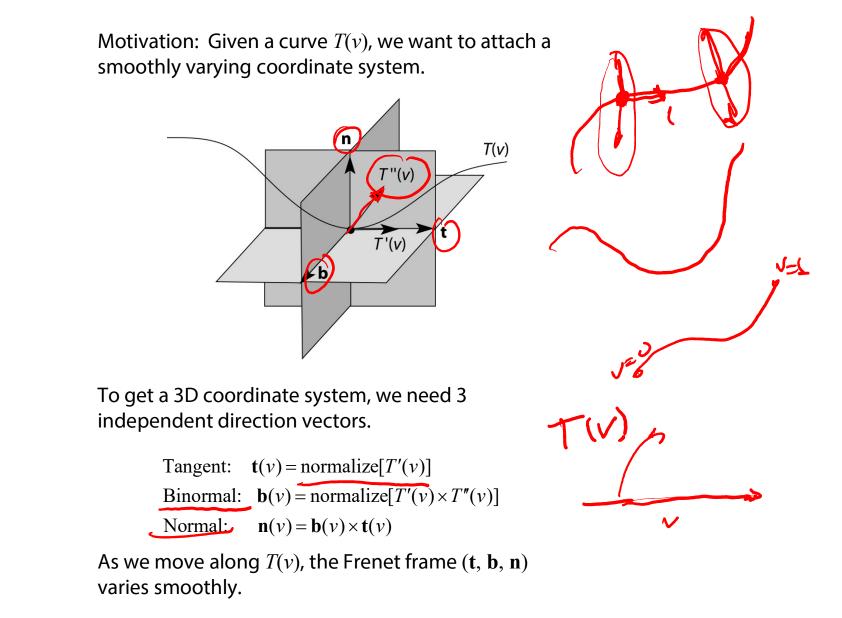
Here are two options:

1. **Fixed** (or **static**): Just translate O_c along T(v).



- 2. Moving. Use the **Frenet frame** of T(v).
 - Allows smoothly varying orientation.
 - Permits surfaces of revolution, for example.

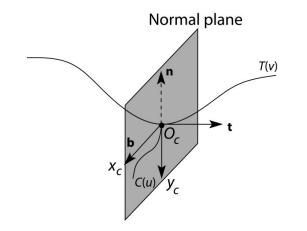
Frenet frames



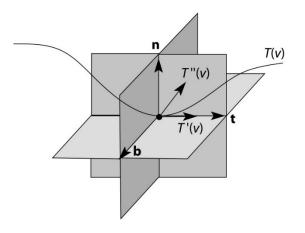
Frenet swept surfaces

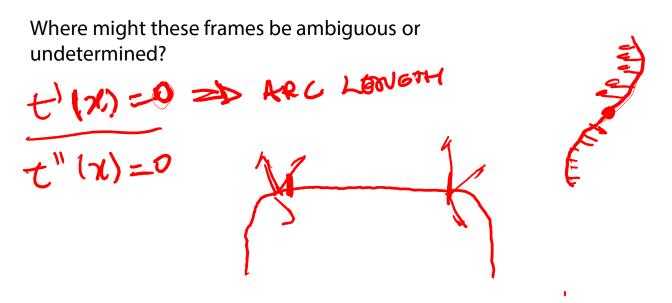
Orient the profile curve C(u) using the Frenet frame of the trajectory T(v):

- Put *C*(*u*) in the **normal plane**.
- Place O_c on T(v).
- Align x_c for C(u) with **b**.
- Align y_c for C(u) with $-\mathbf{n}$.



If T(v) is a circle, you get a surface of revolution exactly!



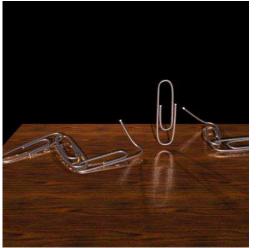


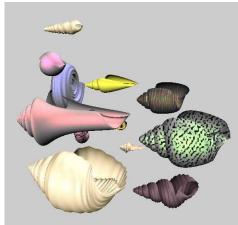
Variations

Several variations are possible:

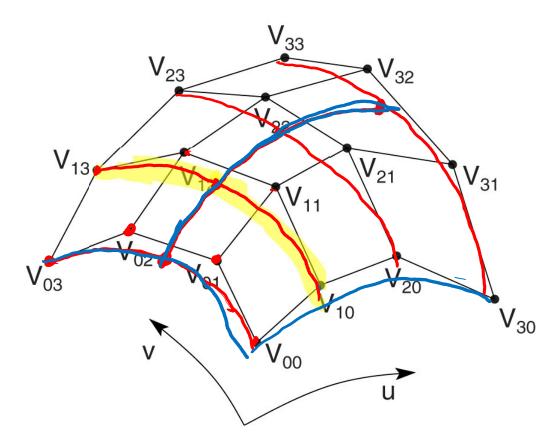
- Scale *C*(*u*) as it moves, possibly using length of *T*(*v*) as a scale factor.

• ...





Tensor product Bézier surfaces

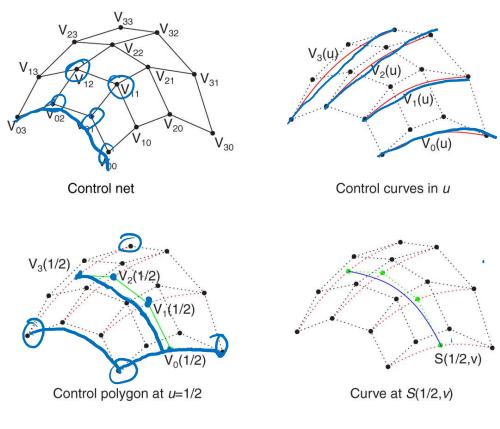


Given a grid of control points V_{ij} , forming a **control net**, construct a surface S(u, v) by:

- treating rows of V (the matrix consisting of the V_{ij}) as control points for curves $V_0(u), \ldots, V_n(u)$.
- treating V₀(u),...,V_n(u) as control points for a curve parameterized by v.

Tensor product Bézier surfaces, cont.

Let's walk through the steps:

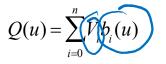


Which control points are always interpolated by the surface?

4 corners

Polynomial form of Bézier surfaces

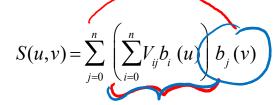
Recall that cubic Bézier *curves* can be written in terms of the Bernstein polynomials:



A tensor product Bézier surface can be written as:

$$S(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{n} V_{ij} b_i(u) b_j(v)$$

In the previous slide, we constructed curves along *u*, and then along *v*. This corresponds to re-grouping the terms like so:

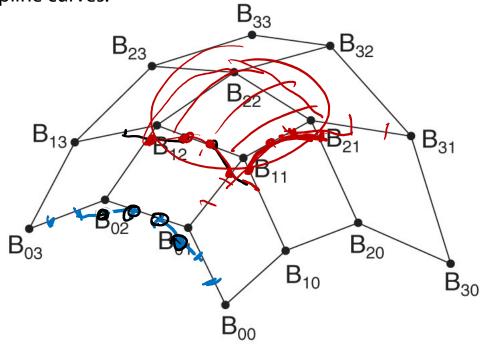


But, we could have constructed them along *v*, then *u*:

$$S(u,v) = \sum_{i=0}^{n} \left(\sum_{j=0}^{n} V_{ij} b_{j}(v) \right) b_{i}(u)$$

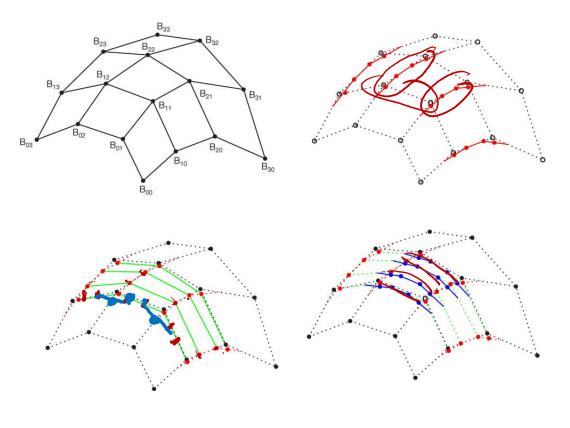
Tensor product B-spline surfaces

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C² continuity and local control, we get B-spline curves:



- treat rows of *B* as control points to generate Bézier control points in *u*.
- treat Bézier control points in *u* as B-spline control points in *v*.
- treat B-spline control points in v to generate Bézier control points in u.

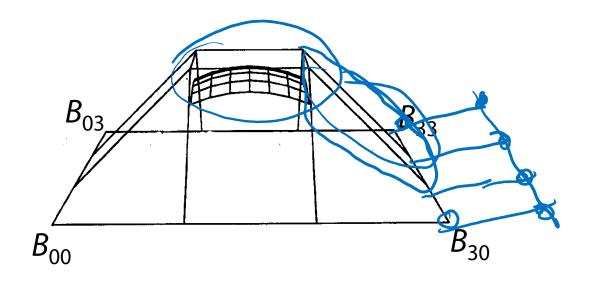
Tensor product B-spline surfaces, cont.



Which B-spline control points are always interpolated by the surface?

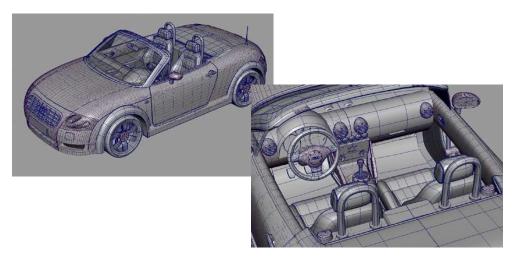
Tensor product B-splines, cont.

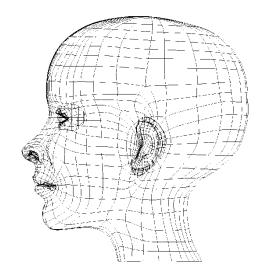
Another example:

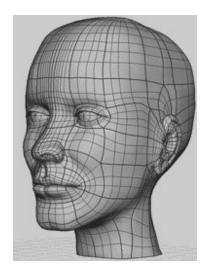


NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.



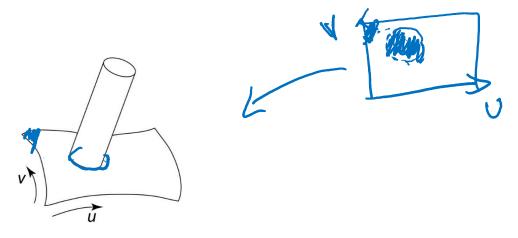




Trimmed NURBS surfaces

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:



We can do this by **trimming** the *u*-*v* domain.

- Define a closed curve in the *u-v* domain (a trim curve)
- Do not draw the surface points inside of this curve.

It's really hard to maintain continuity in these regions, especially while animating.

Summary

What to take home:

- How to construct swept surfaces from a profile and trajectory curve:
 - with a fixed frame
 - with a Frenet frame
- How to construct tensor product Bézier surfaces
- How to construct tensor product B-spline surfaces