
1

Particle Systems

Adriana Schulz
CSE 457

Spring 2020

2

Reading

Required:

 Witkin, Particle System Dynamics, SIGGRAPH ’01
course notes on Physically Based Modeling.
(online handout)

 Witkin and Baraff, Differential Equation Basics,
SIGGRAPH ’01 course notes on Physically Based
Modeling. (online handout)

Optional

 Hockney and Eastwood. Computer simulation
using particles. Adam Hilger, New York, 1988.

 Gavin Miller. “The motion dynamics of snakes
and worms.” Computer Graphics 22:169-178,
1988.

3

What are particle systems?

A particle system is a collection of point masses that
obeys some physical laws (e.g, gravity, heat
convection, spring behaviors, …).

Particle systems can be used to simulate all sorts of
physical phenomena:

4

Particle in a flow field

We begin with a single particle with:

 Position,

 Velocity,

Suppose the velocity is actually dictated by a driving
function, a vector flow field, g:

If a particle starts at some point in that flow field, how
should it move?

x

y

x  x
y













x
g(x,t)

5

Diff eqs and integral curves

The equation

is actually a first order differential equation.

We can solve for x through time by starting at an initial
point and stepping along the vector field:

This is called an initial value problem and the
solution is called an integral curve.

Start Here

6

Euler’s method

One simple approach is to choose a time step, t, and take linear
steps along the flow:

Writing as a time iteration:

This approach is called Euler’s method and looks like:

Properties:

 Simplest numerical method
 Bigger steps, bigger errors. Error ~ O(t 2).

Need to take pretty small steps, so not very efficient. Better (more
complicated) methods exist, e.g., adaptive timesteps, Runge-Kutta,
and implicit integration.

xi1  xi t gi gi  g(xi, t  it)with

7

Particle in a force field

Now consider a particle in a force field f.

In this case, the particle has:

 Mass, m
 Acceleration,

The particle obeys Newton’s law:

So, given a force, we can solve for the acceleration:

The force field f can in general depend on the position
and velocity of the particle as well as time.

Thus, with some rearrangement, we end up with:

8

This equation:

is a second order differential equation.

Our solution method, though, worked on first order
differential equations.

Second order equations

9

This equation:

is a second order differential equation.

Our solution method, though, worked on first order
differential equations.

We can rewrite the second order equation as:

where we substitute in v and its derivative to get a pair
of coupled first order equations.

Second order equations

10

Phase space

Concatenate x and v to make a
6-vector: position in phase space.

Taking the time derivative: another
6-vector.

A vanilla 1st-order differential
equation.

x
v











11

Differential equation solver

Applying Euler’s method:

Again, performs poorly for large t.

xi1  xi t vi

vi1  vi t  f i

m

x(t t)  x(t)t v(t)

v(t t)  v(t)t  f(x(t),v(t), t)
m

And making substitutions:

Writing this as an iteration, we have:

Starting with:

f i  f xi,vi, t with

12

Particle structure

x
v
f
m



















position

velocity

force accumulator

mass

Position in phase space

How do we represent a particle?

13

Single particle solver interface

x
v
f
m



















x
v











v
f /m











6 getDim

derivEval

getState

setState

14

Particle systems

particles n time

In general, we have a particle system consisting of n
particles to be managed over time:

15

Particle system solver interface

derivEval

get/setState
getDim

For n particles, the solver interface now looks like:

particles n time

16

Particle system diff. eq. solver

We can solve the evolution of a particle system
again using the Euler method:

17

Forces

Each particle can experience a force which sends it on
its merry way.

Where do these forces come from? Some examples:

 Constant (gravity)
 Position/time dependent (force fields)
 Velocity-dependent (drag)
 N-ary (springs)

How do we compute the net force on a particle?

18

Force objects are black boxes that point to the
particles they influence and add in their contributions.

We can now visualize the particle system with force
objects:

Particle systems with forces

particles n time forces

F2 Fnf

nf

F1

19

Gravity and viscous drag

fgrav  mG

p->f += p->m * F->G

fdrag  kdragv

p->f -= F->k * p->v

The force due to gravity is simply:

Often, we want to slow things down with viscous drag:

20

A spring is a simple examples of an “N-ary” force.
Recall the equation for the force due to a 1D spring:

With damping:

In 2D or 3D, we get:

Note: stiff spring systems can be very unstable under Euler
integration. Simple solutions include heavy damping (may not
look good), tiny time steps (slow), or better integration (Runge-
Kutta is straightforward).

Damped spring

f  kspring (x  r)

f  [kspring (x  r) kdampv]

f1   kspring (x  r) kdamp v  x̂  x̂

f2   f1

x  x1  x2

x̂  x
x

v  v1  v2

r p1 
x1
v1













p2 
x2
v2













x

r = rest length

21

1. Clear forces
• Loop over particles, zero force

accumulators

2. Calculate forces
• Sum all forces into accumulators

3. Return derivatives
• Loop over particles, return v and f / m

derivEval

Apply forces
to particles

Clear force
accumulators1

2

3 Return derivatives
to solver

F2 F3 FnfF1

22

Bouncing off the walls

Handling collisions is a useful add-on for a particle
simulator.

For now, we’ll just consider simple point-plane
collisions.

A plane is fully specified by any point P on the plane
and its normal N.

(Let’s assume N is normalized, ||N|| = 1.)

N

P
v

x

23

Collision Detection

How do you decide when you’ve made exact contact
with the plane?

N

P
v

x

24

Normal and tangential velocity

To compute the collision response, we need to
consider the normal and tangential components of a
particle’s velocity.

N

P

v

x

Nv v

Tv
vN  (N v)N
vT  v vN

25

The response to collision is then to immediately replace
the current velocity with a new velocity:

where krestitution  [0,1].

The particle will then move according to this velocity in
the next timestep.

Collision Response

before after

v  vT  krestitutionvN

v’
resitution Nk v

Tv

Nv v

Tv

26

Collision without contact

In general, we don’t sample moments in time when
particles are in exact contact with the surface.

There are a variety of ways to deal with this problem.

The most expensive is backtracking: determine if a
collision must have occurred, and then roll back the
simulation to the moment of contact.

A simple alternative is to determine if a collision must
have occurred in the past, and then pretend that
you’re currently in exact contact.

27

Very simple collision response

How do you decide when you’ve had a collision
during a timestep?

A problem with this approach is that particles will
disappear under the surface. We can reduce this
problem by essentially offsetting the surface:

Also, the response may not be enough to bring a
particle to the other side of a wall In that case,
detection should include a velocity check:

N

Pv1

x1
x2

x3v2

v3

28

Spherical particles

We will allow our particles to have finite radius:

The basic particle-inside-surface test then becomes:

We still pad this test to limit how much particles cross
the surface before being reflected:

The velocity test is unchanged.

N

Pv

x
rp

29

More complicated collision response

Another solution is to modify the update scheme to:

 detect the future time and point of collision

 reflect the particle within the time-step

N

P
v

x

30

Particle-sphere collision

Suppose a particle collides with a sphere of radius rs
sitting at the origin:

 How would we detect this collision?

 What normal should we use for collision
response?

31

Particle-cylinder collision

Suppose a particle collides with a cylinder of height h
and radius rc sitting at the origin:

 How would we detect this collision?

 What normal should we use for collision
response?

32

Collision in model coordinates

As with ray tracing, it convenient to handle collisions in
canonical object coordinates.

For the project, we will assume only rigid transformations
– rotations+translations – of colliders and particles.

33

Collision in model coordinates (cont’d)

Note: we assume for the project that scaling will be
handled only through the provided dimensions of
colliders and particles (height, radius, etc.).

If uniform scale is additionally applied, then it must be
extracted from the collider transformation and applied to
the epsilons and particle sphere radius when operating in
the collider’s object coordinates.

If non-uniform scale is applied, then things get trickier,
since, e.g., spherical particles may become oriented (non-
axis-aligned) ellipsoids, requiring more complex collision
analysis.

Extra credit… 

34

Particle frame of reference

Let’s say we had our robot arm example and we
wanted to launch particles from its tip.

How would we go about starting the particles from
the right place?

First, we have to look at the coordinate systems in the
OpenGL pipeline…

35

The OpenGL geometry pipeline

36

Summary

What you should take away from this lecture:

 The meanings of all the boldfaced terms
 Euler method for solving differential equations
 Combining particles into a particle system
 Physics of a particle system
 Various forces acting on a particle
 Simple collision detection with a plane and a

sphere
 How to hook your particle system into the

coordinate frame of your model

