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Reading

Required:

 Witkin, Particle System Dynamics, SIGGRAPH ’01 
course notes on Physically Based Modeling. 
(online handout)

 Witkin and Baraff, Differential Equation Basics, 
SIGGRAPH ’01 course notes on Physically Based 
Modeling. (online handout)

Optional

 Hockney and Eastwood. Computer simulation 
using particles.  Adam Hilger, New York, 1988.

 Gavin Miller. “The motion dynamics of snakes 
and worms.” Computer Graphics 22:169-178, 
1988.



3

What are particle systems?

A particle system is a collection of point masses that 
obeys some physical laws (e.g, gravity, heat 
convection, spring behaviors, …).

Particle systems can be used to simulate all sorts of 
physical phenomena:
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Particle in a flow field

We begin with a single particle with:

 Position,  

 Velocity, 

Suppose the velocity is actually dictated by a driving 
function, a vector flow field, g:

If a particle starts at some point in that flow field, how 
should it move?

x

y

x  x
y













x
g(x,t)
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Diff eqs and integral curves

The equation 

is actually a first order differential equation.

We can solve for x through time by starting at an initial 
point and stepping along the vector field:

This is called an initial value problem and the 
solution is called an integral curve.

Start Here
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Euler’s method

One simple approach is to choose a time step, t, and take linear 
steps along the flow:

Writing as a time iteration:

This approach is called Euler’s method and looks like:

Properties:

 Simplest numerical method
 Bigger steps, bigger errors.  Error ~ O(t 2).

Need to take pretty small steps, so not very efficient.  Better (more 
complicated) methods exist, e.g., adaptive timesteps, Runge-Kutta, 
and implicit integration.

xi1  xi t gi gi  g(xi, t  it)with 
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Particle in a force field

Now consider a particle in a force field f.

In this case, the particle has:

 Mass, m
 Acceleration, 

The particle obeys Newton’s law: 

So, given a force, we can solve for the acceleration:

The force field f can in general depend on the position 
and velocity of the particle as well as time.

Thus, with some rearrangement, we end up with:
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This equation:

is a second order differential equation.

Our solution method, though, worked on first order 
differential equations.

Second order equations
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This equation:

is a second order differential equation.

Our solution method, though, worked on first order 
differential equations.

We can rewrite the second order equation as:

where we substitute in v and its derivative to get a pair 
of coupled first order equations.

Second order equations
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Phase space

Concatenate x and v to make a 
6-vector: position in phase space.

Taking the time derivative: another 
6-vector.

A vanilla 1st-order differential 
equation.

x
v










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Differential equation solver

Applying Euler’s method:

Again, performs poorly for large t.

xi1  xi t vi

vi1  vi t  f i

m

x(t t)  x(t)t v(t)

v(t t)  v(t)t  f(x(t),v(t), t)
m

And making substitutions:

Writing this as an iteration, we have:

Starting with:

f i  f xi,vi, t with 
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Particle structure

x
v
f
m



















position

velocity

force accumulator

mass

Position in phase space

How do we represent a particle?
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Single particle solver interface

x
v
f
m


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v
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

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

v
f /m


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






6 getDim

derivEval

getState

setState
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Particle systems

particles n time

In general, we have a particle system consisting of n
particles to be managed over time:
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Particle system solver interface

derivEval

get/setState
getDim

For n particles, the solver interface now looks like:

particles n time
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Particle system diff. eq. solver

We can solve the evolution of a particle system 
again using the Euler method:
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Forces

Each particle can experience a force which sends it on 
its merry way.

Where do these forces come from?  Some examples:

 Constant (gravity)
 Position/time dependent (force fields)
 Velocity-dependent (drag)
 N-ary (springs)

How do we compute the net force on a particle?
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Force objects are black boxes that point to the 
particles they influence and add in their contributions. 

We can now visualize the particle system with force 
objects:

Particle systems with forces

particles n time forces

F2 Fnf

nf

F1
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Gravity and viscous drag

fgrav  mG

p->f += p->m * F->G

fdrag  kdragv

p->f -= F->k * p->v

The force due to gravity is simply:

Often, we want to slow things down with viscous drag:
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A spring is a simple examples of an “N-ary” force. 
Recall the equation for the force due to a 1D spring:

With damping:

In 2D or 3D, we get:

Note: stiff spring systems can be very unstable under Euler 
integration.  Simple solutions include heavy damping (may not 
look good), tiny time steps (slow), or better integration (Runge-
Kutta is straightforward).

Damped spring

f  kspring (x  r)

f  [kspring (x  r) kdampv]

f1   kspring ( x  r) kdamp v  x̂  x̂

f2   f1

x  x1  x2

x̂  x
x

v  v1  v2

r p1 
x1
v1













p2 
x2
v2













x

r = rest length
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1. Clear forces
• Loop over particles, zero force 

accumulators

2. Calculate forces
• Sum all forces into accumulators

3. Return derivatives
• Loop over particles, return v and f / m

derivEval

Apply forces
to particles

Clear force 
accumulators1

2

3 Return derivatives
to solver

F2 F3 FnfF1
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Bouncing off the walls

Handling collisions is a useful add-on for a particle 
simulator.

For now, we’ll just consider simple point-plane 
collisions.

A plane is fully specified by any point P on the plane 
and its normal N.

(Let’s assume N is normalized, ||N|| = 1.)

N

P
v

x
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Collision Detection

How do you decide when you’ve made exact contact 
with the plane?

N

P
v

x
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Normal and tangential velocity

To compute the collision response,  we need to 
consider the normal and tangential components of a 
particle’s velocity.

N

P

v

x

Nv v

Tv
vN  (N v)N
vT  v vN
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The response to collision is then to immediately replace 
the current velocity with a new velocity:

where krestitution  [0,1].

The particle will then move according to this velocity in 
the next timestep.

Collision Response

before after

v  vT  krestitutionvN

v’
resitution Nk v

Tv

Nv v

Tv
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Collision without contact

In general, we don’t sample moments in time when 
particles are in exact contact with the surface.

There are a variety of ways to deal with this problem.

The most expensive is backtracking: determine if a 
collision must have occurred, and then roll back the 
simulation to the moment of contact.

A simple alternative is to determine if a collision must 
have occurred in the past, and then pretend that 
you’re currently in exact contact.
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Very simple collision response

How do you decide when you’ve had a collision 
during a timestep?

A problem with this approach is that particles will 
disappear under the surface.  We can reduce this 
problem by essentially offsetting the surface:

Also, the response may not be enough to bring a 
particle to the other side of a wall  In that case, 
detection should include a velocity check:

N

Pv1

x1
x2

x3v2

v3
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Spherical particles

We will allow our particles to have finite radius:

The basic particle-inside-surface test then becomes:

We still pad this test to limit how much particles cross 
the surface before being reflected:

The velocity test is unchanged.

N

Pv

x
rp
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More complicated collision response

Another solution is to modify the update scheme to:

 detect the future time and point of collision

 reflect the particle within the time-step

N

P
v

x
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Particle-sphere collision

Suppose a particle collides with a sphere of radius rs
sitting at the origin:

 How would we detect this collision? 

 What normal should we use for collision 
response?
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Particle-cylinder collision

Suppose a particle collides with a cylinder of height h
and radius rc sitting at the origin:

 How would we detect this collision? 

 What normal should we use for collision 
response?
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Collision in model coordinates

As with ray tracing, it convenient to handle collisions in 
canonical object coordinates.

For the project, we will assume only rigid transformations 
– rotations+translations – of colliders and particles.  
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Collision in model coordinates (cont’d)

Note: we assume for the project that scaling will be 
handled only through the provided dimensions of 
colliders and particles (height, radius, etc.).

If uniform scale is additionally applied, then it must be 
extracted from the collider transformation and applied to 
the epsilons and particle sphere radius when operating in 
the collider’s object coordinates.

If non-uniform scale is applied, then things get trickier, 
since, e.g., spherical particles may become oriented (non-
axis-aligned) ellipsoids, requiring more complex collision 
analysis.

Extra credit…  
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Particle frame of reference

Let’s say we had our robot arm example and we 
wanted to launch particles from its tip.  

How would we go about starting the particles from 
the right place?

First, we have to look at the coordinate systems in the 
OpenGL pipeline…



35

The OpenGL geometry pipeline
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Summary

What you should take away from this lecture:

 The meanings of all the boldfaced terms
 Euler method for solving differential equations
 Combining particles into a particle system 
 Physics of a particle system
 Various forces acting on a particle
 Simple collision detection with a plane and a 

sphere
 How to hook your particle system into the 

coordinate frame of your model


