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Reading

Optional reading:

 Angel and Shreiner: 10.1-10.3, 10.5.2, 

10.6-10.7, 10.9

 Marschner and Shirley: 2.5, chapter 15.

Further reading:

 Bartels, Beatty, and Barsky.  An 

Introduction to Splines for use in 

Computer Graphics and Geometric 

Modeling, 1987.

 Farin. Curves and Surfaces for CAGD:  A 

Practical Guide, 4th ed., 1997.
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Mathematical curve representation

 Explicit:  y = f (x)

• what if the curve isn’t a function, e.g., a circle?

 Implicit:  g(x, y) = 0

 Parametric: Q(u) = (x(u), y(u))

• For the circle:

x (u) = cos2pu

y (u) = sin2pu
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Parametric polynomial curves

We’ll use parametric curves, Q(u)=(x(u), y(u)), where 

the functions are all polynomials in the parameter.

Advantages:

 easy (and efficient) to compute

 infinitely differentiable (all derivatives above 

the nth derivative are zero)

We’ll also assume that u varies from 0 to 1.

Note that we’ll focus on 2D curves, but the 

generalization to 3D curves is completely 

straightforward.



5

We will now build a curve geometrically, and then 

show how it is a parametric polynomial curve.

We start with control points {V0, V1, V2, V3} and 

connect them together to make a control 

polygon.

We then recursively subdivide:

What if u = 0?

What if u = 1?

de Casteljau’s algorithm
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Recursive notation:

What is the equation for        ?

de Casteljau’s algorithm, cont’d
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Finding Q(u)   (cont’d)

In general,

where the              are the Bernstein polynomials:

This defines a class of curves called Bézier curves.

Q: If we have k control points, what is the polynomial order of 
the curve?
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Bernstein polynomials

For degree 3, the Bernstein polynomials are:

Useful properties (for Bernstein polynomials of any degree) 
on the interval [0,1]:

 The sum of all four is exactly 1 for any u, due to the 
binomial theorem.  Thus, the curves form a “partition 
of unity”.

 Each polynomial has value between 0 and 1.

These together imply that the curve is generated by         
convex combinations of the control points and therefore 
lies within the convex hull of those control points.

The convex hull of a point set is the smallest convex 
polygon (in 2D) or polyhedron (in 3D) enclosing the points.  
In 2D, think of a string looped around the outside of the 
point set and then pulled tightly around the set.
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Displaying Bézier curves

How could we draw one of these things?
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Curve desiderata

Bézier curves offer a fairly simple way to model 

parametric curves.

But, let’s consider some general properties we 

would like curves to have…
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Local control

One problem with Béziers is that every control 

point affects every point on the curve (except the 

endpoints).

Moving a single control point affects the whole 

curve!

We’d like to have local control, that is, have each 

control point affect some well-defined 

neighborhood around that point.
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Interpolation

Bézier curves are approximating.  The curve does 

not (necessarily) pass through all the control 

points.  Each point pulls the curve toward it, but 

other points are pulling as well.

We’d like to have a curve that is interpolating, 

that is, that always passes through every control 

point.
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Continuity

We want our curve to have continuity: there 

shouldn’t be any abrupt changes as we move along 

the curve.

“0th order” continuity would mean that curve 

doesn’t jump from one place to another.  

We can also look at derivatives of the curve to get 

higher order continuity.  
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1st and 2nd Derivative Continuity

First order continuity implies continuous first 

derivative:

Let’s think of u as “time” and Q(u) as the path of a 

particle through space.  What is the meaning of the 

first derivative, and which way does it point?

Second order continuity means continuous second 

derivative:

What is the intuitive meaning of this derivative?

Q '(u) =
dQ(u)

du
 

Q ''(u) =
d2Q(u)

du2
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Cn (Parametric) Continuity

In general, we define Cn continuity as follows:

Note: these are nested degrees of continuity:

C-1: C0:

C1, C2 : C3, C4, …:

Q(u) is Cn  continuous 

iff

Q(i)(u) =
d iQ(u)

dui
 is continuous for 0 £ i £ n
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Bézier curves → splines

Bézier curves have C-infinity continuity on their 

interiors, but we saw that they do not exhibit local 

control or interpolate their control points.

It is possible to define points that we want to 

interpolate, and then solve for the Bézier control 

points that will do the job.

But, you will need as many control points as 

interpolated points -> high order polynomials -> 

wiggly curves.  (And you still won’t have local 

control.)

Instead, we’ll splice together a curve from 

individual Béziers segments, in particular, cubic 

Béziers.

We call these curves splines.  

The primary concern when splicing cuves together 

is getting good continuity at the endpoints where 

they meet…
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Ensuring C0 continuity

Suppose we have a cubic Bézier defined by 

(V0,V1,V2,V3), and we want to attach another curve 

(W0,W1,W2,W3) to it, so that there is C0 continuity at the 

joint.

What constraint(s) does this place on (W0,W1,W2,W3)?

C0 :Q
V

(1) =Q
W

(0)
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The C0 Bezier spline

How then could we construct a curve passing 

through a set of points P1…Pn?

We call this curve a spline.  The endpoints of the 

Bezier segments are called joints.  All other Bezier 

points (i.e., not endpoints) are called inner Bezier 

points; these points are generally not interpolated.

In the animator project, you will construct such a 

curve by specifying all the Bezier control points 

directly.
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For degree 3 (cubic) curves, we have already 

shown that we get:

We can expand the terms in u and rearrange to 

get:

What then is the first derivative when evaluated at 

each endpoint, u = 0 and u = 1?

1st derivatives at the endpoints

Q(u) = (1-u)3V
0
+3u(1-u)2V

1
+3u2(1-u)V

2
+u3V

3

Q(u) =    (-V
0
+3V

1
-3V

2
+V

3
)u3  +

      (3V
0
-6V

1
+3V

2
)u2  +  (-3V

0
+3V

1
)u +  V

0

¢Q (0) =

¢Q (1) =



21

Ensuring C1 continuity

Suppose we have a cubic Bézier defined by 

(V0,V1,V2,V3), and we want to attach another curve 

(W0,W1,W2,W3) to it, so that there is C1 continuity at 

the joint.

What constraint(s) does this place on 

(W0,W1,W2,W3)?

C1 :
Q
V

(1) =Q
W

(0)

Q
V

' (1) =Q
W

' (0)

ì

í
ï

îï



22

The C1 Bezier spline

How then could we construct a curve passing 

through a set of points P0…Pn?

We can specify the Bezier control points directly, or 

we can devise a scheme for placing them 

automatically…
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Catmull-Rom splines

If we set each derivative to be one half of the 

vector between the previous and next controls, we 

get a Catmull-Rom spline.

This leads to:
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Catmull-Rom to Beziers

We can write the Catmull-Rom to Bezier 

transformation as:
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Endpoints of Catmull-Rom splines

We can see that Catmull-Rom splines don’t 

interpolate the first and last control points.

By repeating those control points, we can force 

interpolation.
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We can give more control by exposing the 

derivative scale factor as a parameter:

The parameter t controls “slackness.”  Catmull-Rom 

uses t =1/2.  Here’s an example with t =3/2.

Tension control
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2nd derivatives at the endpoints

Finally, we’ll want to develop C2 splines.  To do this, 

we’ll need second derivatives of Bezier curves.

Taking the second derivative of Q(u) yields:

¢¢Q (0) = 6(V
0

- 2V
1
+V

2
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Ensuring C2 continuity

Suppose we have a cubic Bézier defined by 

(V0,V1,V2,V3), and we want to attach another curve 

(W0,W1,W2,W3) to it, so that there is C2 continuity at 

the joint.

What constraint(s) does this place on 

(W0,W1,W2,W3)?

C 2 :

Q
V

(1) =Q
W

(0)

Q
V

' (1) =Q
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A C2 Bezier spline

How then could we construct a curve passing 

through a set of points P0…Pn?

How many segments change if I move any control 

point?
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A C2 Bezier spline

How then could we construct a curve passing 

through a set of points P0…Pn?

How many segments change if I move any control 

point?
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Building a complex spline

Instead of specifying the Bézier control points 

themselves, let’s specify the corners of the A-

frames in order to build a C2 continuous spline.

These are called B-splines.  The starting set of 

points are called de Boor points.
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B-splines

Here is the completed B-spline.

What are the Bézier control points, in terms of the 

de Boor points?
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B-splines to Beziers

We can write the B-spline to Bezier transformation 

as:
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Endpoints of B-splines

As with Catmull-Rom splines, the first and last 

control points of B-splines are generally not 

interpolated.

Again, we can force interpolation by repeating the 

endpoints…twice.
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In the animator project, you will draw a curve on 

the screen:

You will actually treat this curve as:

Where q is a variable you want to animate.  We can 

think of the result as a function:

In general, you have to apply some constraints to 

make sure that q (t) actually is a function.

Curves in the animator project

Q(u) = x(u), y(u)( )

q(u) = y(u)

t(u) = x(u)

q(t)



36

Curve type C0 C1 C2 Interpolating Local control

C0 Bezier

Catmull-Rom

B-Spline

C2-interpolating
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What if we want a closed curve, i.e., a loop?

With Catmull-Rom and B-spline curves, this is easy:

Closing the loop
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Drawing Bézier curves, revisited

Let’s return to the question of how to draw Bezier 

curves, the building block for splines.  Consider a 

set of Bézier control points are arranged as follows:

How many line segments do you really need to 

draw?

It would be nice if we had an adaptive algorithm, 

that would take into account flatness.
DisplayBezier( V0, V1, V2, V3 ) 

begin

if ( FlatEnough( V0, V1, V2, 
V3 ) )

Line( V0, V3 );

else

something;

end;
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Subdivide and conquer

DisplayBezier( V0, V1, V2, V3 ) 

begin

if ( FlatEnough( V0, V1, V2, V3 ) )

Line( V0, V3 );

else

Subdivide(V[ ])  L[ ], R[ ] 

DisplayBezier( L0, L1, L2, L3 );

DisplayBezier( R0, R1, R2, R3 
);

end;
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Testing for flatness

Compare total length of control polygon to 

length of line connecting endpoints:

V
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1
+ V

1
-V

2
+ V

2
-V

3

V
0
-V

3

<1+e
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Reparameterization

We have so far been considering parametric 

continuity, derivatives w.r.t. the parameter u.  

This form of continuity makes sense particularly if 

we really are describing a particle moving over 

time and want its motion (e.g., velocity and 

acceleration) to be smooth.

But, what if we’re thinking only in terms of the 

shape of the curve?  Is the parameterization 

actually intrinsic to the shape, i.e., is it the case that 

a shape has only one parameterization?
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Arc length parameterization

We can reparameterize a curve so that equal steps 

in parameter space (we’ll call this new parameter 

“s“ map to equal distances along the curve:

We call this an arc length parameterization.  We 

can re-write the equal step requirement as:

Looking at very small steps, we find:

Q(s) ÞDs = s
2
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1
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=
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Gn (Geometric) Continuity

Now, we define geometric Gn continuity as follows:

Where Q(s) is parameterized by arc length.

The first derivative still points along the tangent, 

but its length is always 1.

Gn continuity is usually a weaker constraint than Cn

continuity (e.g., “speed” along the curve does not 

matter).

Q(s) is Gn  continuous 

iff

Q(i)(s) =
d iQ(s)

dsi
 is continuous for 0 £ i £ n



44

Gn Continuity (cont’d)

The second derivative now has a specific geometric 

interpretation.  First, the “osculating circle” at a point 

on a curve can be defined based on the limit 

behavior of three points moving toward each other:

The second derivative Q’’(s) then has these 

properties:

where r(s) and c(s) are the radius and center of O(s), 

respectively, and k(s) is the “curvature” of the curve at 

s.

O(s) = lim
s
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Rational polynomial curves 

Remarkably, parametric polynomial curves cannot

represent something as simple as a circle!

BUT, ratios of polynomials can.  We can write these 

in terms of homogeneous coordinates, which we 

then normalize:

The equations above describe a rational Bézier

curve.

It can be represented in terms of control points, but 

now we add the homogenous dimension.  So for a 

2D curve, we have control points with three

components (lofted up into 3D), where the 

homogenous component can be something other 

than 1.
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Rational polynomial curves (cont’d) 

What do we get for the following curve?

Q: How does Illustrator represent a circle?

Q
2D

(u) =

2u

1-u2

1+u2
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NURBS

In general, we can spline together rational Bézier

curves, to get things like rational B-splines.

Another thing we can do is vary the range of u so 

that it is not always [0..1] in each Bézier segment of 

a spline.  E.g, it could be [0..1] in one segment and 

then [0..2] in the next.  

The u-range affects placement of control points.  

The result is a non-uniform spline.

A very common type of spline is a Non-Uniform 

Rational B-Spline or NURBS. 

(The “B” in B-spline technically stands for “Basis.”) 
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Summary

What to take home from this lecture:

 Geometric and algebraic definitions of Bézier

curves.

 Basic properties of Bézier curves.

 How to display Bézier curves with line 

segments.

 Meanings of Ck continuities.

 Meanings of the Gk continuities.

 Properties of B-splines and Catmull-Rom 

splines.

 Geometric construction of B-splines and 

Catmull-Rom splines.

 How to construct closed loop splines.


