
1

Parametric curves

Adriana Schulz

CSE 457

Spring 2020

2

Reading

Optional reading:

 Angel and Shreiner: 10.1-10.3, 10.5.2,

10.6-10.7, 10.9

 Marschner and Shirley: 2.5, chapter 15.

Further reading:

 Bartels, Beatty, and Barsky. An

Introduction to Splines for use in

Computer Graphics and Geometric

Modeling, 1987.

 Farin. Curves and Surfaces for CAGD: A

Practical Guide, 4th ed., 1997.

3

Mathematical curve representation

 Explicit: y = f (x)

• what if the curve isn’t a function, e.g., a circle?

 Implicit: g(x, y) = 0

 Parametric: Q(u) = (x(u), y(u))

• For the circle:

x (u) = cos2pu

y (u) = sin2pu

4

Parametric polynomial curves

We’ll use parametric curves, Q(u)=(x(u), y(u)), where

the functions are all polynomials in the parameter.

Advantages:

 easy (and efficient) to compute

 infinitely differentiable (all derivatives above

the nth derivative are zero)

We’ll also assume that u varies from 0 to 1.

Note that we’ll focus on 2D curves, but the

generalization to 3D curves is completely

straightforward.

5

We will now build a curve geometrically, and then

show how it is a parametric polynomial curve.

We start with control points {V0, V1, V2, V3} and

connect them together to make a control

polygon.

We then recursively subdivide:

What if u = 0?

What if u = 1?

de Casteljau’s algorithm

6

Recursive notation:

What is the equation for ?

de Casteljau’s algorithm, cont’d

V0

1

V
0
1 = (1-u)V

0
+uV

1

V
1
1 = (1-u)V

1
+uV

2

V
2
1 = (1-u)V

2
+uV

3

V
0
2 = (1-u)V

0
1 +uV

1
1

V
1
2 = (1-u)V

1
1 +uV

2
1

Q(u) = (1-u)V
0
2 +uV

1
2

V0

1

V
0
1 = (1-u)V

0
+uV

1

V
1
1 = (1-u)V

1
+uV

2

V
2
1 = (1-u)V

2
+uV

3

V
0
2 = (1-u)V

0
1 +uV

1
1

V
1
2 = (1-u)V

1
1 +uV

2
1

Q(u) = (1-u)V
0
2 +uV

1
2

V
0
1 = (1-u)V

0
+uV

1

V
1
1 = (1-u)V

1
+uV

2

V
2
1 = (1-u)V

2
+uV

3

V
0
2 = (1-u)V

0
1 +uV

1
1

V
1
2 = (1-u)V

1
1 +uV

2
1

Q(u) = (1-u)V
0
2 +uV

1
2

= (1-u)[(1-u)V
0
1 +uV

1
1]+u[(1-u)V

1
1 +uV

2
1]

= (1-u)[(1-u){(1-u)V
0

+uV
1
}+u{(1-u)V

1
+uV

2
}]+ ...

= (1-u)3V
0

+ 3u(1-u)2V
1
+3u2(1-u)V

2
+u3V

3

= V
0

+ (-3V
0

+3V
1
)u+ (3V

0
-6V

1
+3V

2
)u2 + (-V

0
+ 3V

1
-3V

2
+V

3
)u3

=

V
0,x

+ (-3V
0,x

+3V
1,x

)u+ (3V
0,x

-6V
1,x

+ 3V
2,x

)u2 + (-V
0,x

+ 3V
1,x

-3V
2,x

+V
3,x

)u3

V
0,y

+ (-3V
0,y

+3V
1,y

)u+ (3V
0,y

-6V
1,y

+ 3V
2,y

)u2 + (-V
0,y

+ 3V
1,y

- 3V
2,y

+V
3,y

)u3

1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

=

a
0

+ a
1
u+a

2
u2 +a

3
u3

b
0

+b
1
u+b

2
u2 +b

3
u3

1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

=

x(u)

y(u)

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

V
0
1 = (1-u)V

0
+uV

1

V
1
1 = (1-u)V

1
+uV

2

V
2
1 = (1-u)V

2
+uV

3

V
0
2 = (1-u)V

0
1 +uV

1
1

V
1
2 = (1-u)V

1
1 +uV

2
1

Q(u) = (1-u)V
0
2 +uV

1
2

7

= (1-u)[(1-u)V
0
1 +uV

1
1]+u[(1-u)V

1
1 +uV

2
1]

= (1-u)[(1-u){(1-u)V
0

+uV
1
}+u{(1-u)V

1
+uV

2
}]+ ...

= (1-u)3V
0

+ 3u(1-u)2V
1
+3u2(1-u)V

2
+u3V

3

= V
0

+ (-3V
0

+3V
1
)u+ (3V

0
-6V

1
+3V

2
)u2 + (-V

0
+ 3V

1
-3V

2
+V

3
)u3

=

V
0,x

+ (-3V
0,x

+3V
1,x

)u+ (3V
0,x

-6V
1,x

+ 3V
2,x

)u2 + (-V
0,x

+ 3V
1,x

-3V
2,x

+V
3,x

)u3

V
0,y

+ (-3V
0,y

+3V
1,y

)u+ (3V
0,y

-6V
1,y

+ 3V
2,y

)u2 + (-V
0,y

+ 3V
1,y

- 3V
2,y

+V
3,y

)u3

1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

=

a
0

+ a
1
u+a

2
u2 +a

3
u3

b
0

+b
1
u+b

2
u2 +b

3
u3

1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

=

x(u)

y(u)

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

= (1-u)[(1-u)V
0
1 +uV

1
1]+u[(1-u)V

1
1 +uV

2
1]

= (1-u)[(1-u){(1-u)V
0

+uV
1
}+u{(1-u)V

1
+uV

2
}]+ ...

= (1-u)3V
0

+ 3u(1-u)2V
1
+3u2(1-u)V

2
+u3V

3

= V
0

+ (-3V
0

+3V
1
)u+ (3V

0
-6V

1
+3V

2
)u2 + (-V

0
+ 3V

1
-3V

2
+V

3
)u3

=

V
0,x

+ (-3V
0,x

+3V
1,x

)u+ (3V
0,x

-6V
1,x

+ 3V
2,x

)u2 + (-V
0,x

+ 3V
1,x

-3V
2,x

+V
3,x

)u3

V
0,y

+ (-3V
0,y

+3V
1,y

)u+ (3V
0,y

-6V
1,y

+ 3V
2,y

)u2 + (-V
0,y

+ 3V
1,y

- 3V
2,y

+V
3,y

)u3

1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

=

a
0

+ a
1
u+a

2
u2 +a

3
u3

b
0

+b
1
u+b

2
u2 +b

3
u3

1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

=

x(u)

y(u)

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

V
0
1 = (1-u)V

0
+uV

1

V
1
1 = (1-u)V

1
+uV

2

V
2
1 = (1-u)V

2
+uV

3

V
0
2 = (1-u)V

0
1 +uV

1
1

V
1
2 = (1-u)V

1
1 +uV

2
1

Q(u) = (1-u)V
0
2 +uV

1
2

Is this a polynomial curve?

Can also be written in this form:

V
0
1 = (1-u)V

0
+uV

1

V
1
1 = (1-u)V

1
+uV

2

V
2
1 = (1-u)V

2
+uV

3

V
0
2 = (1-u)V

0
1 +uV

1
1

V
1
2 = (1-u)V

1
1 +uV

2
1

Q(u) = (1-u)V
0
2 +uV

1
2

b
0

3(u) = (1-u)3

b
1

3(u) = 3u(1-u)2

b
2

3(u) = 3u2 (1-u)

b
3

3(u) = u3

8

Finding Q(u) (cont’d)

In general,

where the are the Bernstein polynomials:

This defines a class of curves called Bézier curves.

Q: If we have k control points, what is the polynomial order of
the curve?

Q(u) = b
i

n (u)V
i

i=0

n

å

b
i

n (u)

n

i

æ

è
ç

ö

ø
÷ =

n!

(n- i)!i!
bi
n(u) º

n

i

æ

è
ç

ö

ø
÷u

i (1-u)n-ibi
n(u) º

n

i

æ

è
ç

ö

ø
÷u

i (1-u)n-i

9

Bernstein polynomials

For degree 3, the Bernstein polynomials are:

Useful properties (for Bernstein polynomials of any degree)
on the interval [0,1]:

 The sum of all four is exactly 1 for any u, due to the
binomial theorem. Thus, the curves form a “partition
of unity”.

 Each polynomial has value between 0 and 1.

These together imply that the curve is generated by
convex combinations of the control points and therefore
lies within the convex hull of those control points.

The convex hull of a point set is the smallest convex
polygon (in 2D) or polyhedron (in 3D) enclosing the points.
In 2D, think of a string looped around the outside of the
point set and then pulled tightly around the set.

b
0

3(u) = (1-u)3

b
1

3(u) = 3u(1-u)2

b
2

3(u) = 3u2 (1-u)

b
3

3(u) = u3

10

Displaying Bézier curves

How could we draw one of these things?

11

Curve desiderata

Bézier curves offer a fairly simple way to model

parametric curves.

But, let’s consider some general properties we

would like curves to have…

12

Local control

One problem with Béziers is that every control

point affects every point on the curve (except the

endpoints).

Moving a single control point affects the whole

curve!

We’d like to have local control, that is, have each

control point affect some well-defined

neighborhood around that point.

13

Interpolation

Bézier curves are approximating. The curve does

not (necessarily) pass through all the control

points. Each point pulls the curve toward it, but

other points are pulling as well.

We’d like to have a curve that is interpolating,

that is, that always passes through every control

point.

14

Continuity

We want our curve to have continuity: there

shouldn’t be any abrupt changes as we move along

the curve.

“0th order” continuity would mean that curve

doesn’t jump from one place to another.

We can also look at derivatives of the curve to get

higher order continuity.

15

1st and 2nd Derivative Continuity

First order continuity implies continuous first

derivative:

Let’s think of u as “time” and Q(u) as the path of a

particle through space. What is the meaning of the

first derivative, and which way does it point?

Second order continuity means continuous second

derivative:

What is the intuitive meaning of this derivative?

Q '(u) =
dQ(u)

du

Q ''(u) =
d2Q(u)

du2

16

Cn (Parametric) Continuity

In general, we define Cn continuity as follows:

Note: these are nested degrees of continuity:

C-1: C0:

C1, C2 : C3, C4, …:

Q(u) is Cn continuous

iff

Q(i)(u) =
d iQ(u)

dui
 is continuous for 0 £ i £ n

17

Bézier curves → splines

Bézier curves have C-infinity continuity on their

interiors, but we saw that they do not exhibit local

control or interpolate their control points.

It is possible to define points that we want to

interpolate, and then solve for the Bézier control

points that will do the job.

But, you will need as many control points as

interpolated points -> high order polynomials ->

wiggly curves. (And you still won’t have local

control.)

Instead, we’ll splice together a curve from

individual Béziers segments, in particular, cubic

Béziers.

We call these curves splines.

The primary concern when splicing cuves together

is getting good continuity at the endpoints where

they meet…

18

Ensuring C0 continuity

Suppose we have a cubic Bézier defined by

(V0,V1,V2,V3), and we want to attach another curve

(W0,W1,W2,W3) to it, so that there is C0 continuity at the

joint.

What constraint(s) does this place on (W0,W1,W2,W3)?

C0 :Q
V

(1) =Q
W

(0)

19

The C0 Bezier spline

How then could we construct a curve passing

through a set of points P1…Pn?

We call this curve a spline. The endpoints of the

Bezier segments are called joints. All other Bezier

points (i.e., not endpoints) are called inner Bezier

points; these points are generally not interpolated.

In the animator project, you will construct such a

curve by specifying all the Bezier control points

directly.

20

For degree 3 (cubic) curves, we have already

shown that we get:

We can expand the terms in u and rearrange to

get:

What then is the first derivative when evaluated at

each endpoint, u = 0 and u = 1?

1st derivatives at the endpoints

Q(u) = (1-u)3V
0
+3u(1-u)2V

1
+3u2(1-u)V

2
+u3V

3

Q(u) = (-V
0
+3V

1
-3V

2
+V

3
)u3 +

 (3V
0
-6V

1
+3V

2
)u2 + (-3V

0
+3V

1
)u + V

0

¢Q (0) =

¢Q (1) =

21

Ensuring C1 continuity

Suppose we have a cubic Bézier defined by

(V0,V1,V2,V3), and we want to attach another curve

(W0,W1,W2,W3) to it, so that there is C1 continuity at

the joint.

What constraint(s) does this place on

(W0,W1,W2,W3)?

C1 :
Q
V

(1) =Q
W

(0)

Q
V

' (1) =Q
W

' (0)

ì

í
ï

îï

22

The C1 Bezier spline

How then could we construct a curve passing

through a set of points P0…Pn?

We can specify the Bezier control points directly, or

we can devise a scheme for placing them

automatically…

23

Catmull-Rom splines

If we set each derivative to be one half of the

vector between the previous and next controls, we

get a Catmull-Rom spline.

This leads to:

V
0

= P
1

V
1
= P

1
+ 1

6
(P

2
- P

0
)

V
2

= P
2

- 1
6

(P
3
- P

1
)

V
3
= P

2

24

Catmull-Rom to Beziers

We can write the Catmull-Rom to Bezier

transformation as:

V
0

T

V
1

T

V
2

T

V
3

T

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

=

0 1 0 0

-1/ 6 1 1/ 6 0

0 1/ 6 1 -1/ 6

0 0 1 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

P
0

T

P
1

T

P
2

T

P
3

T

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

V =M
Catmull-Rom

P

25

Endpoints of Catmull-Rom splines

We can see that Catmull-Rom splines don’t

interpolate the first and last control points.

By repeating those control points, we can force

interpolation.

26

We can give more control by exposing the

derivative scale factor as a parameter:

The parameter t controls “slackness.” Catmull-Rom

uses t =1/2. Here’s an example with t =3/2.

Tension control

V
0

= P
1

V
1
= P

1
+ t

3
(P

2
- P

0
)

V
2

= P
2

- t
3

(P
3

- P
1
)

V
3
= P

2

27

2nd derivatives at the endpoints

Finally, we’ll want to develop C2 splines. To do this,

we’ll need second derivatives of Bezier curves.

Taking the second derivative of Q(u) yields:

¢¢Q (0) = 6(V
0

- 2V
1
+V

2
)

= -6[(V
1
-V

0
) + (V

1
-V

2
)]

¢¢Q (1) = 6(V
1
- 2V

2
+V

3
)

= -6[(V
2

-V
3
) + (V

2
-V

1
)]

28

Ensuring C2 continuity

Suppose we have a cubic Bézier defined by

(V0,V1,V2,V3), and we want to attach another curve

(W0,W1,W2,W3) to it, so that there is C2 continuity at

the joint.

What constraint(s) does this place on

(W0,W1,W2,W3)?

C 2 :

Q
V

(1) =Q
W

(0)

Q
V

' (1) =Q
W

' (0)

Q
V

'' (1) =Q
W

'' (0)

ì

í

ï
ï

î

ï
ï

29

A C2 Bezier spline

How then could we construct a curve passing

through a set of points P0…Pn?

How many segments change if I move any control

point?

30

A C2 Bezier spline

How then could we construct a curve passing

through a set of points P0…Pn?

How many segments change if I move any control

point?

31

Building a complex spline

Instead of specifying the Bézier control points

themselves, let’s specify the corners of the A-

frames in order to build a C2 continuous spline.

These are called B-splines. The starting set of

points are called de Boor points.

32

B-splines

Here is the completed B-spline.

What are the Bézier control points, in terms of the

de Boor points?

V
0

= ____[____ B
0
+ ____ B

1
]

+____[____ B
1
+ ____ B

2
]

= ____ B
0
+ ____ B

1
+ ____ B

2

V
1
= ____ B

1
+ ____ B

2

V
2

= ____ B
1
+ ____ B

2

V
3
= ____ B

1
+ ____ B

2
+ ____ B

3

33

B-splines to Beziers

We can write the B-spline to Bezier transformation

as:

V
0

T

V
1

T

V
2

T

V
3

T

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

=

1/ 6 2 / 3 1/ 6 0

0 2 / 3 1/ 3 0

0 1/ 3 2 / 3 0

0 1/ 6 2 / 3 1/ 6

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

B
0

T

B
1

T

B
2

T

B
3

T

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

V =M
B-spline

B

34

Endpoints of B-splines

As with Catmull-Rom splines, the first and last

control points of B-splines are generally not

interpolated.

Again, we can force interpolation by repeating the

endpoints…twice.

35

In the animator project, you will draw a curve on

the screen:

You will actually treat this curve as:

Where q is a variable you want to animate. We can

think of the result as a function:

In general, you have to apply some constraints to

make sure that q (t) actually is a function.

Curves in the animator project

Q(u) = x(u), y(u)()

q(u) = y(u)

t(u) = x(u)

q(t)

36

Curve type C0 C1 C2 Interpolating Local control

C0 Bezier

Catmull-Rom

B-Spline

C2-interpolating

37

What if we want a closed curve, i.e., a loop?

With Catmull-Rom and B-spline curves, this is easy:

Closing the loop

38

Drawing Bézier curves, revisited

Let’s return to the question of how to draw Bezier

curves, the building block for splines. Consider a

set of Bézier control points are arranged as follows:

How many line segments do you really need to

draw?

It would be nice if we had an adaptive algorithm,

that would take into account flatness.
DisplayBezier(V0, V1, V2, V3)

begin

if (FlatEnough(V0, V1, V2,
V3))

Line(V0, V3);

else

something;

end;

39

Subdivide and conquer

DisplayBezier(V0, V1, V2, V3)

begin

if (FlatEnough(V0, V1, V2, V3))

Line(V0, V3);

else

Subdivide(V[])  L[], R[]

DisplayBezier(L0, L1, L2, L3);

DisplayBezier(R0, R1, R2, R3
);

end;

40

Testing for flatness

Compare total length of control polygon to

length of line connecting endpoints:

V
0
-V

1
+ V

1
-V

2
+ V

2
-V

3

V
0
-V

3

<1+e

41

Reparameterization

We have so far been considering parametric

continuity, derivatives w.r.t. the parameter u.

This form of continuity makes sense particularly if

we really are describing a particle moving over

time and want its motion (e.g., velocity and

acceleration) to be smooth.

But, what if we’re thinking only in terms of the

shape of the curve? Is the parameterization

actually intrinsic to the shape, i.e., is it the case that

a shape has only one parameterization?

42

Arc length parameterization

We can reparameterize a curve so that equal steps

in parameter space (we’ll call this new parameter

“s“ map to equal distances along the curve:

We call this an arc length parameterization. We

can re-write the equal step requirement as:

Looking at very small steps, we find:

Q(s) ÞDs = s
2
- s

1
= arclength Q(s

1
),Q(s

2
)é

ë
ù
û

arclength Q(s
1
),Q(s

2
)é

ë
ù
û

s
2
- s

1

=1

lim
s
2
®s

1

arclength Q(s
1
),Q(s

2
)é

ë
ù
û

s
2
- s

1

=
dQ(s)

ds
=1

43

Gn (Geometric) Continuity

Now, we define geometric Gn continuity as follows:

Where Q(s) is parameterized by arc length.

The first derivative still points along the tangent,

but its length is always 1.

Gn continuity is usually a weaker constraint than Cn

continuity (e.g., “speed” along the curve does not

matter).

Q(s) is Gn continuous

iff

Q(i)(s) =
d iQ(s)

dsi
 is continuous for 0 £ i £ n

44

Gn Continuity (cont’d)

The second derivative now has a specific geometric

interpretation. First, the “osculating circle” at a point

on a curve can be defined based on the limit

behavior of three points moving toward each other:

The second derivative Q’’(s) then has these

properties:

where r(s) and c(s) are the radius and center of O(s),

respectively, and k(s) is the “curvature” of the curve at

s.

O(s) = lim
s
1
,s

2
,s

3
®s
O(s

1
,s

2
,s

3
)

¢¢Q (s) =k(s) =
1

r(s)
2

() ()
()

()

s Q s
Q s

r s

−
 =

c

c

r

45

Rational polynomial curves

Remarkably, parametric polynomial curves cannot

represent something as simple as a circle!

BUT, ratios of polynomials can. We can write these

in terms of homogeneous coordinates, which we

then normalize:

The equations above describe a rational Bézier

curve.

It can be represented in terms of control points, but

now we add the homogenous dimension. So for a

2D curve, we have control points with three

components (lofted up into 3D), where the

homogenous component can be something other

than 1.

Q
2D

(u) =

x(u)

y(u)

w(u)

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

=

a
k
uk

k=0

n

å

b
k
uk

k=0

n

å

c
k
uk

k=0

n

å

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

1

¸ c
k
uk

k=0

n

å

Normalize by w(u)

46

Rational polynomial curves (cont’d)

What do we get for the following curve?

Q: How does Illustrator represent a circle?

Q
2D

(u) =

2u

1-u2

1+u2

é

ë

ê
ê
ê

ù

û

ú
ú
ú

47

NURBS

In general, we can spline together rational Bézier

curves, to get things like rational B-splines.

Another thing we can do is vary the range of u so

that it is not always [0..1] in each Bézier segment of

a spline. E.g, it could be [0..1] in one segment and

then [0..2] in the next.

The u-range affects placement of control points.

The result is a non-uniform spline.

A very common type of spline is a Non-Uniform

Rational B-Spline or NURBS.

(The “B” in B-spline technically stands for “Basis.”)

48

Summary

What to take home from this lecture:

 Geometric and algebraic definitions of Bézier

curves.

 Basic properties of Bézier curves.

 How to display Bézier curves with line

segments.

 Meanings of Ck continuities.

 Meanings of the Gk continuities.

 Properties of B-splines and Catmull-Rom

splines.

 Geometric construction of B-splines and

Catmull-Rom splines.

 How to construct closed loop splines.

