


TRACE

REQUIREMENTS

» You will implement essential components of a ray racer,
including

» Sphere Intersection
» Triangle Intersection

» Barycentric interpolation of Normals and UVs (for Trimesh)



TRACE

REQUIREMENTS

» You will implement essential components of a ray racer,
including

» Blinn-Phong Specular-Reflection Shading Model
» Shading
» Light Contributions
» Shadow Attenuation
» Reflection
» Refraction

» Anti-Aliasing



REQUIREMENTS

DEBUGGER TOOLS

» USE THIS, IT WILL SAVE YOUR LIFE!

» Click a pixel in your rendered frame, and observe the scene view in the Ul, it
will show

» Reflection Rays (if happened)

» Refraction Rays (if happened)

» Normal (at the intersection points)

» Shadow/Light rays (intersection point to the light source)

» COP ray (intersection point to the COP)



2) Observe Scene View

Siene A bspuh

Reflection Ray




TRACE

SPHERE INTERSECTION



TRACE

SPHERE INTERSECTION

» Fill codes in Sphere::IntersectLocal()
» The sphere is centered at the origin with radius 0.5

» If the ray r intersects this sphere:

1. Put the hit parameter ini.t
2. Putthe normalini.normal

3. Put the texture coordinates in i.uv (Not a Requirement; You will
get 1 whistle if you implement this)

4. Return true



TRACE

TRIANGLE INTERSECTION



TRACE

TRIANGLE INTERSECTION

» Fill in TriangleFace::IntersectLocal

» See the triangle-intersection handout to get all equations you need.

» Access triangle vertices (class members)

» glm::dvec3 a, b, c

» Interpolate normal and UV

» Barycentric interpolation

» If the ray r intersects this triangle:
Put the hit parameter in i.t
Put the normal in i.normal

Put the texture coordinates in i.uv

AN

Return true



TRACE

BLINN-PHONG SHADING



TRACE

BLINN-PHONG SPECULAR-REFLECTION MODEL

» Formula

Ldicect = ke + Y kalpa; + A3 VAT ;Bj (ka(N - L) + ko (N - Hj)'1*)
7

. 1
A;"St =min | 1, —
a;r;y +birj +¢



TRACE

LIGHT CONTRIBUTIONS (1/3)

» To sum over the light sources, use a for loop to iterate all light
sources as described in the code

» How to access the light

» Light* scene_light = trace_light->light

» Determine the type of light

» Use dynamic casting

if (PointLight* point_light = dynamic_cast<PointLight*>(scene_light)) {
// Do Something

} else if (DirectionallLight* directional_light = dynamic_cast<DirectionallLight*>(scene_light)) {
// Do Something
}



TRACE

LIGHT CONTRIBUTIONS (2/3)

» For Point Light: Get Light Position

» Tracelight::GetTransformPos()

» For Directional Light: Get Light Direction

» Tracelight::GetTransformDirection



TRACE

LIGHT CONTRIBUTIONS (3/3)

» For Point Light:
» Consider Distance Attenuation
» First, check if the light type is AttenuatingLight

if (AttenuatinglLight* attenuating_light = dynamic_cast<AttenuatinglLight*>(scene_light))

» Second, get coefficients a, b, and c

attenuating_light->AttenA.Get();
attenuating_light->AttenB.Get();
attenuating_light->AttenC.Get();



TRACE

SHADOW ATTENUATION

» Rather than simply setting the attenuation to zero if an
object blocks the light, accumulate the product of k_t's
for objects which block the light

» See lecture slides to get more details



TRACE

REFLECTION

» Fill codes in RayTracer::TraceRay in raytracer.cpp to
implement recursive ray tracing

» Get reflection direction
R=2(V-NN-V

» Consider Ul setting in your implementation

if (settings.reflections)

{

// Put your reflection codes here

}



TRACE

REFRACTION (1/2)

» Apply Snell’s law

» Get refraction direction

_
) Up;
cost); =N-V

cos; = /1 —n?(1 — cos?6);)
T = (ncostl; — cos ;)N — nV

Note that Total Internal Reflection (TIR) occurs when the square root term
above is negative.



TRACE

REFRACTION (2/2)

» Be aware of Total Internal Refraction

» Consider the case when the ray is exiting a material into
air
» Consider Ul setting in your implementation

if (settings.refractions)

{
}

// Put your refraction codes here



TRACE

DIRECT + INDIRECT ILLUMINATION

» Formula

Itotal — Idirect + krIreﬂectedRay + ktItransmittedRay



TRACE

DATA STRUCTURE: RAY

» Direction: r.direction

» Position: r.position

» r.at(t) - r.position + (t * r.direction)

» Returns the end position of the ray r after going a distance of t
from its start position



TRACE

ANTI-ALIASING



TRACE

ANTI-ALIASING

» Gets rid of jaggies

» Implement using oversampling.

» Equally divide each pixel, trace the ray, and average the results
» Fill code in Raytracer::ComputePixel
» Enable anti-aliasing

» Goto property of RenderCamera

Monte Carlo = Off

N
v
A
v

Sample Count Type = Constant

Samples Per Pixel 1 B

Must > 1



TRACE

TESTING & TRICKS



TRACE

SIMPLE TEST SCENES

» Start from simpler case: assets/trace/simple

» Sphere: sphere_xxx.yaml

» Trimesh: box_xxx.yaml, cube_xxx.yaml

» Texture: texture_reflection.yaml

» Distance attenuation: box_dist_atten.yaml

» Opaque shadow: box_cyl_opaque_shadow.yaml



TRACE

SIMPLE TEST SCENES

» More scenes in simpler case: assets/trace/simple

» Transparent shadow:

» box_cyl_trans_shadow.yaml, cube_transparent.yaml
» Reflection

» box_cyl_reflect.yaml, texture_reflection.yaml
» Refraction

» box_cyl_trans_shadow.yaml, cube_transparent.yaml

» cylinder_refract.yaml, sphere_refract.yaml



TRACE

MORE COMPLICATED TEST SCENES

» Then test more complicated case in
» assets/trace/trimeshes

» assets/trace/more

» In particular, try

» trimeshes/revolution_texture.yaml to see your trimesh texture

» more/lecture.yaml to see the effect of direct illumination +
reflection + refraction

» trimeshes/dragon.yaml to test your anti-aliasing



TRACE

TIPS AND TRICKS

» Don’t write too much code without testing!

» Lots of dependencies, think carefully before writing any codes

» Use RAY_EPSILON (which is defined as 0.00001) to
account for computer precision error when checking for

iIntersections
RAY EPSILON

~

T




TRACE

AUTO DIFF TOOL

» Two ways

» Diff Selected Scenes: Output errors on the console output and
automatically display the visual diff image (mark unmatched pixels as red)

» Diff All Scenes: Render all test scenes sequentially and output all of the
errors on the console output.

» The tool will also store a diff image, named as
[scene_name]_[render_depth]_diff.png, in the same folder as
the scene .yaml file.

Render View Assets SceneObject

Raytrace Frame

Raytrace and Save Frame

Save Movie Frames

Raytrace and Save Movie Frames

Raytrace Frame And Diff
Diff All Raytrace Scenes



TRACE

MEMORY LEAKS

» A memory leak can (and probably will) ruin your night
hours before your artifact is due

» To test, try to ray trace a complex model (the dragon) with
depth 10, anti-aliasing, HUGE Image

» Cause: not calling free after allocating memory

» Object constructors, vector (array) creation

» Solution: free stuff!

» Call the "delete [object]” on ANYTHING you create that is temporary

» Itis HHGHLY RECOMMENDED you have no memory leaks



a
? ey
$

THE END

600D LUCK




