
TRACE
HELP SESSION

TRACE

REQUIREMENTS

▸ You will implement essential components of a ray racer,
including
▸ Sphere Intersection

▸ Triangle Intersection

▸ Barycentric interpolation of Normals and UVs (for Trimesh)

TRACE

REQUIREMENTS

▸ You will implement essential components of a ray racer,
including
▸ Blinn-Phong Specular-Reflection Shading Model

▸ Shading

▸ Light Contributions

▸ Shadow Attenuation

▸ Reflection

▸ Refraction

▸ Anti-Aliasing

REQUIREMENTS

DEBUGGER TOOLS

▸ USE THIS, IT WILL SAVE YOUR LIFE!

▸ Click a pixel in your rendered frame, and observe the scene view in the UI, it
will show

▸ Reflection Rays (if happened)

▸ Refraction Rays (if happened)

▸ Normal (at the intersection points)

▸ Shadow/Light rays (intersection point to the light source)

▸ COP ray (intersection point to the COP)

REQUIREMENTS

DEBUGGER TOOLS - DEMO

1) Click

2) Observe Scene View

Reflection Ray COP Ray

SPHERE INTERSECTION
TRACE

TRACE

SPHERE INTERSECTION

▸ Fill codes in Sphere::IntersectLocal()

▸ The sphere is centered at the origin with radius 0.5

▸ If the ray r intersects this sphere:
1. Put the hit parameter in i.t

2. Put the normal in i.normal

3. Put the texture coordinates in i.uv (Not a Requirement; You will
get 1 whistle if you implement this)

4. Return true

TRIANGLE INTERSECTION
TRACE

TRACE

TRIANGLE INTERSECTION

▸ Fill in TriangleFace::IntersectLocal
▸ See the triangle-intersection handout to get all equations you need.

▸ Access triangle vertices (class members)
▸ glm::dvec3 a, b, c

▸ Interpolate normal and UV
▸ Barycentric interpolation

▸ If the ray r intersects this triangle:
1. Put the hit parameter in i.t

2. Put the normal in i.normal

3. Put the texture coordinates in i.uv

4. Return true

BLINN-PHONG SHADING
TRACE

TRACE

BLINN-PHONG SPECULAR-REFLECTION MODEL

▸ Formula

TRACE

LIGHT CONTRIBUTIONS (1/3)

▸ To sum over the light sources, use a for loop to iterate all light
sources as described in the code

▸ How to access the light
▸ Light* scene_light = trace_light->light

▸ Determine the type of light
▸ Use dynamic casting

TRACE

LIGHT CONTRIBUTIONS (2/3)

▸ For Point Light: Get Light Position
▸ TraceLight::GetTransformPos()

▸ For Directional Light: Get Light Direction
▸ TraceLight::GetTransformDirection

TRACE

LIGHT CONTRIBUTIONS (3/3)

▸ For Point Light:
▸ Consider Distance Attenuation

▸ First, check if the light type is AttenuatingLight

▸ Second, get coefficients a, b, and c

TRACE

SHADOW ATTENUATION

▸ Rather than simply setting the attenuation to zero if an
object blocks the light, accumulate the product of k_t’s
for objects which block the light

▸ See lecture slides to get more details

TRACE

REFLECTION

▸ Fill codes in RayTracer::TraceRay in raytracer.cpp to
implement recursive ray tracing

▸ Get reflection direction

▸ Consider UI setting in your implementation

TRACE

REFRACTION (1/2)

▸ Apply Snell’s law

▸ Get refraction direction

TRACE

REFRACTION (2/2)

▸ Be aware of Total Internal Refraction

▸ Consider the case when the ray is exiting a material into
air

▸ Consider UI setting in your implementation

TRACE

DIRECT + INDIRECT ILLUMINATION

▸ Formula

TRACE

DATA STRUCTURE: RAY

▸ Direction: r.direction

▸ Position: r.position

▸ r.at(t) – r.position + (t * r.direction)
▸ Returns the end position of the ray r after going a distance of t

from its start position

ANTI-ALIASING
TRACE

TRACE

ANTI-ALIASING

▸ Gets rid of jaggies

▸ Implement using oversampling.
▸ Equally divide each pixel, trace the ray, and average the results

▸ Fill code in Raytracer::ComputePixel

▸ Enable anti-aliasing

▸ Goto property of RenderCamera

Must > 1

TESTING & TRICKS
TRACE

TRACE

SIMPLE TEST SCENES
▸ Start from simpler case: assets/trace/simple
▸ Sphere: sphere_xxx.yaml

▸ Trimesh: box_xxx.yaml, cube_xxx.yaml

▸ Texture: texture_reflection.yaml

▸ Distance attenuation: box_dist_atten.yaml

▸ Opaque shadow: box_cyl_opaque_shadow.yaml

TRACE

SIMPLE TEST SCENES
▸ More scenes in simpler case: assets/trace/simple
▸ Transparent shadow:

▸ box_cyl_trans_shadow.yaml, cube_transparent.yaml

▸ Reflection

▸ box_cyl_reflect.yaml, texture_reflection.yaml

▸ Refraction

▸ box_cyl_trans_shadow.yaml, cube_transparent.yaml

▸ cylinder_refract.yaml, sphere_refract.yaml

TRACE

MORE COMPLICATED TEST SCENES
▸ Then test more complicated case in
▸ assets/trace/trimeshes

▸ assets/trace/more

▸ In particular, try
▸ trimeshes/revolution_texture.yaml to see your trimesh texture

▸ more/lecture.yaml to see the effect of direct illumination +
reflection + refraction

▸ trimeshes/dragon.yaml to test your anti-aliasing

TRACE

TIPS AND TRICKS

▸ Don’t write too much code without testing!
▸ Lots of dependencies, think carefully before writing any codes

▸ Use RAY_EPSILON (which is defined as 0.00001) to
account for computer precision error when checking for
intersections

RAY_EPSILON

TRACE

AUTO DIFF TOOL
▸ Two ways
▸ Diff Selected Scenes: Output errors on the console output and

automatically display the visual diff image (mark unmatched pixels as red)

▸ Diff All Scenes: Render all test scenes sequentially and output all of the
errors on the console output.

▸ The tool will also store a diff image, named as
[scene_name]_[render_depth]_diff.png, in the same folder as
the scene .yaml file.

TRACE

MEMORY LEAKS

▸ A memory leak can (and probably will) ruin your night
hours before your artifact is due

▸ To test, try to ray trace a complex model (the dragon) with
depth 10, anti-aliasing, HUGE Image

▸ Cause: not calling free after allocating memory
▸ Object constructors, vector (array) creation

▸ Solution: free stuff!
▸ Call the “delete [object]” on ANYTHING you create that is temporary

▸ It is HIGHLY RECOMMENDED you have no memory leaks

GOOD LUCK
THE END

