
MODELER
HELP SESSION

MODELER

OUTLINE

▸ Demo

▸ Project requirements

▸ Tips and tricks

MODELER

DEMO

REQUIREMENTS

REQUIREMENTS

▸ Surface of Revolution

▸ Mesh Processing
▸ Smoothing / Sharpening

▸ Hierarchical Modeling

▸ At lease two levels of branching

▸ Add UI controls

▸ Blinn-Phong Point Light Shader
▸ Implement Point Light

▸ Additional Shader
▸ Implement shaders that is worth as least 3 whistles

SURFACE OF REVOLUTION
MODELER

REQUIREMENTS

BUILDING A MESH

▸ A bunch of connected triangles

▸ Triangle built from three vertices

▸ Vertex:
▸ 3d Position

▸ Normal Vector

▸ UV Texture Coordinates

▸ Four giant arrays:
▸ Vertex Positions

▸ Vertex Normals

▸ Vertex UVs

▸ Triangles (indices into vertex arrays)
▸ Defined as CCW (order matters)

(if backface culling is enabled)

REQUIREMENTS

SURFACE OF REVOLUTION

▸ Divide the surface into “bands”

▸ Compute vertex positions and normal
▸ Using sin(), cos(), in C++ code

▸ See the “Surfaces of Revolution” lecture slides for
how

▸ Connect the vertices as triangles

▸ Compute the texture coordinates

u

v

{1, 0}

{0, 1}

{0, 0}

{1, 1}

REQUIREMENTS

TEXTURE MAPPING

▸ To computer the UV Texture Coordinates, the basic
idea is to remap the arc length (curve distance) and
longitude to the range [0, 1]
▸ i.e. longitude for a vertex on the surface can be from 0-360 degrees. The u

coordinate can be from 0-1.

▸ See the lecture slides on “Texture Mapping” for a more detailed explanation

▸ Each vertex for your surface of revolution must have:
▸ Vertex Position

▸ Vertex Normal

▸ Texture Coordinate Pair

MODERLER

VERIFY YOUR IMPLEMENTATION

1. Go to [SceneObject -> Create 3D Object -> Surface of
Revolution] to create a new 3D object

2. Select the object your just created, and change the curve
property as “assets/curve/sample_curve_1/2/4.apts”

3. Observe if the result is the same as the solution

(Optional) Use the curve editor to design a curve on your own
and create a new mesh!

MODELER

CURVE EDITOR (OPTIONAL)

▸ Open the curve editor in the
solution application (not in your
application)
▸ [File -> Open Curve Editor]

▸ Ctrl+Left click to add points on one
side

▸ Save the dense point samples into a
.apts file, by clicking [Save Dense
Samples]

▸ Open the saved .apts file in your
program to create a new mesh

MESH PROCESSING
MODELER

MODELER

RECOMPUTE VERTEX POSTIONS

▸ For each vertex of a mesh, take a
weighted sum of the vertex and its
neighbors to produce a new mesh.

▸ Control Parameters
▸ a: neighbor weight (typically in [-0.5, 0.5])

▸ iter: total iterations applied

▸ Normalization: remember to divide every
filter weight by the sum of all the weights

1

a/N a/N

a/N a/N

N: # of total neighbors
a: weight

MODELER

RECOMPUTE VERTEX NORMALS

▸ Recompute vertex normals by averaging the adjacent face
normals
▸ Use face normal, not vertex normal

▸ You can do

▸ unweighted average, or

▸ face-area-weighted average, which is implemented in solution

HIERARCHICAL MODELING
MODELER

MODELER

HIERARCHICAL MODELING

▸ At least two levels of branching requirement

DEMO

MODELER

HIERARCHICAL MODELING

▸ Add customized hierarchical UI controls

MODELER

HIERARCHICAL MODELING

▸ Add customized hierarchical UI controls
▸ Goto class CustomProp, and edit code snippets

SHADERS
MODELER

REQUIREMENTS

SHADING

▸ GPU is a giant pipeline with many stages
▸ Massively parallel compared to CPU

▸ Hundreds/Thousands of threads

▸ Some stages are programmable with “Shaders”

REQUIREMENTS

BLINN-PHONG SHADER

▸ We provide a directional light shader in OpenGL Shader
Language (GLSL). You must extend it to support point
lights.

▸ Check your work against the sample solution by loading
the test scene
▸ point_light_scene.yaml in assets/scene

▸ Shaders are hard to debug as there is no “print” statement
in GLSL. You must use colors to identify what went wrong,
and think about why they might appear that way.

REQUIREMENTS

CUSTOM SHADER

▸ You are required to do 3 whistles worth, but after that you
can earn extra credit

▸ See project page to get an idea about what shader you
want to implement

REQUIREMENTS

CUSTOM SHADER

▸ We have provided several shader skeleton codes and test
scenes for you, including
▸ Alpha Test Shader (1 whistle)

▸ Spotlight Shader (1 bell / 2 whistles)

▸ Toon Shader (1 bell / 2 whistles)

▸ Skeleton shaders are in the folder “assets”

▸ Test scenes are in the folder “assets/scenes”

▸ See solution to know how it looks like if implemented
correctly

ARTIFACTS
MODELER

MODELER

ARTIFACT

▸ Create your own hierarchical model
out of primitives
▸ At least two levels of branching

▸ One per partner (if you have one)

▸ Add textures, materials, shaders, better
lighting

▸ Disable properties you want to be
locked (certain channels of rotation
maybe)

▸ Submit a short screen capture (.mp4
format) of you showing off your model!

MODELER

RESOURCES

▸ OpenGL
▸ https://learnopengl.com/#!Introduction

▸ Shaders
▸ https://learnopengl.com/#!Getting-started/Shaders

▸ GLSL Shader Tutorials from the Modeler page

▸ http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/

▸ GLSL 1.2 is what we're using

▸ Toon Shading

▸ http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/toon-shading/

▸ Normal Mapping

▸ https://learnopengl.com/Advanced-Lighting/Normal-Mapping

https://learnopengl.com/#!Introduction
https://learnopengl.com/#!Getting-started/Shaders
http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/
http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/toon-shading/
https://learnopengl.com/Advanced-Lighting/Normal-Mapping

GOOD LUCK
THE END

