Parametric surfaces

Adriana Schulz
CSE 457
Fall 2020
Reading

Optional reading:

- Angel and Shreiner readings for “Parametric Curves” lecture, with emphasis on 10.1.2, 10.1.3, 10.1.5, 10.6.2, 10.7.3, 10.9.4.
- Marschner and Shirley, 2.5.

Further reading

Mathematical surface representations

- **Explicit** \(z = f(x, y) \) (a.k.a., a “height field”)
 - what if the curve isn’t a function, like a sphere?

- **Implicit** \(g(x, y, z) = 0 \)

- **Parametric** \(S(u, v) = (x(u, v), y(u, v), z(u, v)) \)
 - For the sphere:
 \[
 x(u, v) = r \cos(2\pi v) \sin(\pi u)
 \]
 \[
 y(u, v) = r \sin(2\pi v) \sin(\pi u)
 \]
 \[
 z(u, v) = r \cos(\pi u)
 \]

As with curves, we’ll focus on parametric surfaces.
Given: A curve $C(v)$ in the xy-plane:

$$C(v) = \begin{bmatrix} C_x(v) \\ C_y(v) \\ 0 \\ 1 \end{bmatrix}$$

Let $R_y(\theta)$ be a rotation about the y-axis.

Find: A surface $S(u,v)$ which is $C(v)$ rotated about the y-axis, where $u,v \in [0,1]$.

Solution: $S(u,v) = R_y(2\pi v) C(v)$
General sweep surfaces

The surface of revolution is a special case of a swept surface.

Idea: Trace out surface $S(u, v)$ by moving a profile curve $C(u)$ along a trajectory curve $T(v)$.

More specifically:

- Suppose that $C(u)$ lies in an (x_c, y_c) coordinate system with origin O_c.
- For every point along $T(v)$, lay $C(u)$ so that O_c coincides with $T(v)$.
Orientation

The big issue:

- How to orient \(C(u) \) as it moves along \(T(v) \)?

Here are two options:

1. **Fixed** (or **static**): Just translate \(O_c \) along \(T(v) \).

2. Moving. Use the **Frenet frame** of \(T(v) \).
 - Allows smoothly varying orientation.
 - Permits surfaces of revolution, for example.
Frenet frames

Motivation: Given a curve $T(v)$, we want to attach a smoothly varying coordinate system.

To get a 3D coordinate system, we need 3 independent direction vectors.

- **Tangent:** $t(v) = \text{normalize}[T'(v)]$
- **Binormal:** $b(v) = \text{normalize}[T'(v) \times T''(v)]$
- **Normal:** $n(v) = b(v) \times t(v)$

As we move along $T(v)$, the Frenet frame (t, b, n) varies smoothly.
Frenet swept surfaces

Orient the profile curve $C(u)$ using the Frenet frame of the trajectory $T(v)$:

- Put $C(u)$ in the **normal plane**.
- Place O_c on $T(v)$.
- Align x_c for $C(u)$ with b.
- Align y_c for $C(u)$ with $-n$.

If $T(v)$ is a circle, you get a surface of revolution exactly!
Degenerate frames

Let’s look back at where we computed the coordinate frames from curve derivatives:

Where might these frames be ambiguous or undetermined?

\[
\begin{align*}
\mathbf{t}'(x) &= \mathbf{0} \Rightarrow \text{ARC LENGTH} \\
\mathbf{t}''(x) &= \mathbf{0}
\end{align*}
\]
Variations

Several variations are possible:

- Scale $C(u)$ as it moves, possibly using length of $T(v)$ as a scale factor.
- Morph $C(u)$ into some other curve $\tilde{C}(u)$ as it moves along $T(v)$.
- ...
Tensor product Bézier surfaces

Given a grid of control points V_{ij}, forming a control net, construct a surface $S(u, v)$ by:

- treating rows of V (the matrix consisting of the V_{ij}) as control points for curves $V_0(u), \ldots, V_n(u)$.
- treating $V_0(u), \ldots, V_n(u)$ as control points for a curve parameterized by v.
Tensor product Bézier surfaces, cont.

Let’s walk through the steps:

Which control points are always interpolated by the surface?

4 corners
Polynomial form of Bézier surfaces

Recall that cubic Bézier curves can be written in terms of the Bernstein polynomials:

\[Q(u) = \sum_{i=0}^{n} b_i(u) \]

A tensor product Bézier surface can be written as:

\[S(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{n} V_{ij} b_i(u) b_j(v) \]

In the previous slide, we constructed curves along \(u \), and then along \(v \). This corresponds to re-grouping the terms like so:

\[S(u,v) = \sum_{j=0}^{n} \left(\sum_{i=0}^{n} V_{ij} b_i(u) \right) b_j(v) \]

But, we could have constructed them along \(v \), then \(u \):

\[S(u,v) = \sum_{i=0}^{n} \left(\sum_{j=0}^{n} V_{ij} b_j(v) \right) b_i(u) \]
As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C^2 continuity and local control, we get B-spline curves:

- treat rows of B as control points to generate Bézier control points in u.
- treat Bézier control points in u as B-spline control points in v.
- treat B-spline control points in v to generate Bézier control points in u.
Tensor product B-spline surfaces, cont.

Which B-spline control points are always interpolated by the surface?

None
Tensor product B-splines, cont.

Another example:
NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.
Trimmed NURBS surfaces

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:

We can do this by trimming the u-v domain.

- Define a closed curve in the u-v domain (a trim curve)
- Do not draw the surface points inside of this curve.

It’s really hard to maintain continuity in these regions, especially while animating.
Summary

What to take home:

• How to construct swept surfaces from a profile and trajectory curve:
 • with a fixed frame
 • with a Frenet frame
• How to construct tensor product Bézier surfaces
• How to construct tensor product B-spline surfaces