Hierarchical Modeling

Adriana Schulz
CSE 457
Fall 2019

Reading

Optional:
¢ Angel, sections 8.1 - 8.6, 8.8

Further reading:
¢ OpenGL Programming Guide, chapter 3

Symbols and instances

Most graphics APIs support a few geometric
primitives:

¢ spheres
¢ cubes
¢ cylinders

These symbols are instanced using an instance
transformation.

QAQ/FL&/L&

Q: What is the matrix for the instance transformation
above?

3D Example: A robot arm

Let’s build a robot arm out of a cylinder and two cuboids,
with the following 3 degrees of freedom:

+ Base rotates about its vertical axis by &
¢ Upper arm rotates in its xy-plane by ¢
¢ Lower arm rotates in its xy-plane by

wer arm
Uppera r & Y
(A ”{
Base —
i 7 0

[Angel, 2011]

(Note that the angles are set to zero in the figures on the
right; i.e., the parts are shown in their “default” positions.)

Suppose we have transformations R,(-), R,(), R,(), T(-, -,).
Q: What matrix do we use to transform the base?
Q: What matrix product for the upper arm?

Q: What matrix product for the lower arm?

3D Example: Arobotarm

An alternative interpretation is that we are taking the
original coordinate frames...

Base

From parts to model to viewer

y Yy
Model or object space
hWI hy Y
X X X
—
z 2] z
ﬁ Mmodel
Yuw
Y
World space
T
2 o

view

Y

Ye Eye or camera space

Robot arm implementation

The robot arm can be displayed by keeping a global
matrix and computing it at each step:

Matrix M, M model, M view;

main ()

{

M view = compute view_ transform();

robot arm() ;

robot_arm()
{
M model = R_y(theta);
M = M view*M model;
base () ;
M model = R_y(theta)*T(0,hl,0)*R _z(phi);
M = M view*M model;
upper_arm() ;
M model = R _y(theta)*T(0,hl,0)*R _z(phi)*T(0,h2,0)*R _z(psi);
M = M view*M model;

lower_arm() ;

Do the matrix computations seem wasteful?

Robot arm implementation, better

Instead of recalculating the global matrix each time,
we can just update it in place by concatenating
matrices on the right:

Matrix M_modelview;

main ()

{

M modelview = compute view_transform() ;

robot_arm() ;

robot_arm()
{
M modelview *= R y(theta);
base () ;
M modelview *= T(0,hl,0)*R _z(phi);
upper_arm() ;
M modelview *= T(0,h2,0)*R z(psi);

lower arm();

Hierarchical modeling

Hierarchical models can be composed of instances
using trees or DAGs:

Chassis Chassis
/ | \
L = R-R [LF|
///,/ \ \\ R-F \ v /L- R
Right-front | | Right-rear | | | eft-front Left-rear Wheel
wheel wheel wheel wheel

+ edges contain geometric transformations

* nodes contain geometry (and possibly drawing
attributes)
We will use trees for hierarchical models.

How might we Lower arm

draw the tree for
the robot arm?

Upper arm

Base

A complex example: human figure

M h
M lua Alr ua 1W1 ul IM,‘ o
Head Left-upper || [Right-upper|| @ Left-upper | |Right-upper
arm arm leg leg
My, M, My M,y
Left-lower || | Right-lower|| | Left-lower || |Right-lower
arm arm leg leg

Q: What's the most sensible way to traverse this tree?

10

Using canonical primitives

Consider building the robot arm again, but this time the
building blocks are canonical primitives like a unit cylinder
and a unit cube. We can use transformations like T(tx,ty,tz),

S(sx,sy,sz) R /(6), etc.

What additional transformations are needed?
What does the hierarchy look like now?

y y

Ca'no.n.ical 1 I ’ X : 4 oy
primitives
2/ !

z

Unit cylinder Unit cube

Lower arm

11

Animation

The above examples are called articulated models:
¢ rigid parts
+ connected by joints

They can be animated by specifying the joint angles
(or other display parameters) as functions of time.

12

Key-frame animation

The most common method for character animation in
production is key-frame animation.

¢ Each joint specified at various key frames (not
necessarily the same as other joints)

¢ System does interpolation or in-betweening

Doing this well requires:

+ A way of smoothly interpolating key frames:
splines

¢ A good interactive system

+ Alot of skill on the part of the animator

8 1+ 60

13

Scene graphs

The idea of hierarchical modeling can be extended to
an entire scene, encompassing:

+ many different objects

+ lights

¢ camera position

This is called a scene tree or scene graph.

Scene

2

Camera
Light1
Light2
Xform
Object2

Xform

Object1

\

Xform

Materials1

Xform

\

Object3

\

Geometry1

14

Summary

Here’s what you should take home from this lecture:

L 4

*

All the boldfaced terms.

How primitives can be instanced and composed
to create hierarchical models using geometric
transforms.

How the notion of a model tree or DAG can be
extended to entire scenes.

How OpenGL transformations can be used in
hierarchical modeling.

How keyframe animation works.

15

