Affine transformations

Adriana Schulz
CSE 457
Fall 2020
Reading

Optional reading:

- Angel and Shreiner: 3.1, 3.7-3.11
- Marschner and Shirley: 2.3, 2.4.1-2.4.4, 6.1.1-6.1.4, 6.2.1, 6.3

Further reading:

- Angel, the rest of Chapter 3
- Foley, et al, Chapter 5.1-5.5.
Geometric transformations

Geometric transformations will map points in one space to points in another: \((x', y', z') = f(x, y, z)\).

These transformations can be very simple, such as scaling each coordinate, or complex, such as non-linear twists and bends.

We'll focus on transformations that can be represented easily with matrix operations.
Vector representation

We can represent a point, \(p = (x, y) \), in the plane or \(p = (x, y, z) \) in 3D space:

- as column vectors

\[
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]

- as row vectors

\[
\begin{bmatrix}
x & y \\
x & y & z
\end{bmatrix}
\]
Canonical axes
Vector length and dot products
Vector cross products
Representation, cont.

We can represent a 2-D transformation M by a matrix

$$
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
$$

If \mathbf{p} is a column vector, M goes on the left:

$$
\mathbf{p}' = M\mathbf{p}
$$

$$
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
$$

If \mathbf{p} is a row vector, M^T goes on the right:

$$
\mathbf{p}' = \mathbf{p}M^T
$$

$$
\begin{bmatrix}
 x' & y'
\end{bmatrix} =
\begin{bmatrix}
 x & y
\end{bmatrix}
\begin{bmatrix}
 a & c \\
 b & d
\end{bmatrix}
$$

We will use column vectors.
Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix \(M \):

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix}
\]

So:

\[
x' = ax + by
\]
\[
y' = cx + dy
\]

We will develop some intimacy with the elements \(a, b, c, d \ldots \)
Identity

Suppose we choose \(a = d = 1, b = c = 0 \):

- Gives the **identity** matrix:

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

- Doesn't move the points at all
Scaling

Suppose we set $b = c = 0$, but let a and d take on any positive value:

- Gives a **scaling** matrix:
 \[
 \begin{bmatrix}
 a & 0 \\
 0 & d
 \end{bmatrix}
 \]

- Provides **differential (non-uniform) scaling** in x and y:
 \[
 x' = ax \\
 y' = dy
 \]
Suppose we keep $b = c = 0$, but let either a or d go negative.

Examples:
Now let's leave $a = d = 1$ and experiment with $b \ldots$

The matrix

$$\begin{bmatrix}
1 & b \\
0 & 1
\end{bmatrix}$$

gives:

$$x' = x + by$$

$$y' = y$$
Effect on unit square

Let's see how a general 2 x 2 transformation M affects the unit square:

$$
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 q & r & s & t
\end{bmatrix}
=
\begin{bmatrix}
 q' & r' & s' & t'
\end{bmatrix}
$$

$$
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 0 & 1 & 1 & 0
\end{bmatrix}
=
\begin{bmatrix}
 0 & a & a+b & b
\end{bmatrix}
$$

$$
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 0 & 0 & 1 & 1
\end{bmatrix}
=
\begin{bmatrix}
 0 & c & c+d & d
\end{bmatrix}
$$
Effect on unit square, cont.

Observe:

- Origin invariant under M
- M can be determined just by knowing how the corners $(1,0)$ and $(0,1)$ are mapped
- a and d give x- and y-scaling
- b and c give x- and y-shearing
Rotation

From our observations of the effect on the unit square, it should be easy to write down a matrix for “rotation about the origin”:

\[
\begin{bmatrix}
1 \\
0
\end{bmatrix} \rightarrow
\]

\[
\begin{bmatrix}
0 \\
1
\end{bmatrix} \rightarrow
\]

Thus,

\[
M = R(\theta) =
\]

\[
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\]
Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

- Scaling
- Rotation
- Reflection
- Shearing

Q: What important operation does that leave out?
Affine transformations

In order to incorporate the idea that both the basis and the origin can change, we augment the linear space \mathbf{u}, \mathbf{v} with an origin \mathbf{t}

An affine transformation then is expressed as:

$$\mathbf{p'} = x \cdot \mathbf{u} + y \cdot \mathbf{v} + \mathbf{t}$$

How can we write an affine transformation with matrices?
Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a third component to every point:

\[
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix} \rightarrow
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Adding the third “w” component puts us in **homogenous coordinates**.

And then transform with a 3 x 3 matrix:

\[
\begin{bmatrix}
 x' \\
 y' \\
 w'
\end{bmatrix}
= T(t) \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

\[\begin{bmatrix}
 1 & 0 & 1 \\
 0 & 1 & 1/2 \\
 0 & 0 & 1
\end{bmatrix}\]

... gives **translation**!
Anatomy of an affine matrix

The addition of translation to linear transformations gives us **affine transformations**.

In matrix form, 2D affine transformations always look like this:

\[
M = \begin{bmatrix}
 a & b & t_x \\
 c & d & t_y \\
 0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
 A & \mathbf{t} \\
 0 & 0 & 1
\end{bmatrix}
\]

2D affine transformations always have a bottom row of [0 0 1].

An “affine point” is a “linear point” with an added \(w\)-coordinate which is always 1:

\[
\mathbf{p}_{\text{aff}} = \begin{bmatrix}
 \mathbf{p}_{\text{lin}} \\
 1
\end{bmatrix} = \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Applying an affine transformation gives another affine point:

\[
M\mathbf{p}_{\text{aff}} = \begin{bmatrix}
 A\mathbf{p}_{\text{lin}} + \mathbf{t} \\
 1
\end{bmatrix}
\]
Rotation about arbitrary points

Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation by β, about any point $\mathbf{q} = [q_x \ q_y]^T$ with a matrix.

Let’s do this with rotation and translation matrices of the form $R(\theta)$ and $T(t)$, respectively.

1. Translate \mathbf{q} to origin
2. Rotate
3. Translate back
Points and vectors

Vectors have an additional coordinate of \(w = 0 \). Thus, a change of origin has no effect on vectors.

Q: What happens if we multiply a vector by an affine matrix?

These representations reflect some of the rules of affine operations on points and vectors:

- vector + vector →
- scalar \(\cdot \) vector →
- point - point →
- point + vector →
- point + point →
- scalar \(\cdot \) point + scalar \(\cdot \) vector →
- scalar \(\cdot \) vector + scalar \(\cdot \) vector →
- scalar \(\cdot \) point + scalar \(\cdot \) point →

One useful combination of affine operations is: \(P(t) = P_o + tu \)

Q: What does this describe?
Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D ones.

For example, scaling:

\[
\begin{bmatrix}
 x'
 y'
 z'
 1
\end{bmatrix}
=
\begin{bmatrix}
 s_x & 0 & 0 & 0 \\
 0 & s_y & 0 & 0 \\
 0 & 0 & s_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Translation in 3D

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Rotation in 3D

These are the rotations about the canonical axes:

\[R_x(\alpha) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\alpha & -\sin\alpha & 0 \\ 0 & \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[R_y(\beta) = \begin{bmatrix} \cos\beta & 0 & \sin\beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\beta & 0 & \cos\beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[R_z(\gamma) = \begin{bmatrix} \cos\gamma & -\sin\gamma & 0 & 0 \\ \sin\gamma & \cos\gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

A general rotation can be specified in terms of a product of these three matrices. How else might you specify a rotation?
Shearing in 3D

Shearing is also more complicated. Here is one example:

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & b & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

We call this a shear with respect to the x-z plane.
Properties of affine transformations

Here are some useful properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Midpoints map to midpoints (in fact, ratios are always preserved)

\[
\begin{align*}
\text{ratio} &= \frac{\|pq\|}{\|qr\|} = \frac{s}{t} = \frac{\|p'q'\|}{\|q'r'\|}
\end{align*}
\]
Summary

What to take away from this lecture:

- All the names in boldface.
- How points and transformations are represented.
- How to compute lengths, dot products, and cross products of vectors, and what their geometrical meanings are.
- What all the elements of a 2 x 2 transformation matrix do and how these generalize to 3 x 3 transformations.
- What homogeneous coordinates are and how they work for affine transformations.
- How to concatenate transformations.
- The mathematical properties of affine transformations.