Texture Mapping

Zoran Popović
CSE 457
Spring 2019

Texture mapping

Texture mapping allows you to take a simple polygon and give it the appearance of something much more complex.
- Due to Ed Catmull, PhD thesis, 1974
- Refined by Blinn & Newell, 1976

A texture can modulate just about any parameter – diffuse color, specular color, specular exponent, ...

Reading

Optional
- Angel and Shreiner: 7.4-7.10
- Marschner and Shirley: 11.1-11.2.3, 11.2.5, 11.4-11.5

Further reading
- Woo, Neider, & Davis. Chapter 9

Implementing texture mapping

A texture lives in its own abstract image coordinates paramaterized by (u, v) in the range ([0..1], [0..1]):

It can be wrapped around many different surfaces:

With a ray caster, we can do the sphere and cylinder mappings directly (as we will see later). For graphics hardware, everything gets converted to a triangle mesh with associated (u, v) coordinates.

Note: if the surface moves/deforms, the texture goes with it.
Recall that for a surface of revolution, we have:

Profile curve: \(C(j) \) where \(j \in [0..M-1] \)

Rotation angles: \(\theta[i] = 2\pi i / N \) where \(i \in [0..N] \)

The simplest assignment of texture coordinates would be:

Note that you should include the rotation angles for \(i = 0 \) and \(i = N \), even though they produce the same points (after rotating by 0 and \(2\pi \)). Why do this?

If we wrap an image around this surface of revolution, what artifacts would we expect to see?

We can reduce distortion in \(v \). Define:

\[
d[j] = \begin{cases}
\left\lceil \frac{j}{N} \right\rceil - C[j-1] & \text{if } j \neq 0 \\
0 & \text{if } j = 0
\end{cases}
\]

and set \(v \) to fractional distance along the curve:

You must do this for \(v \) for the programming assignment!

The texture is usually stored as an image. Thus, we need to convert from abstract texture coordinate:

\((u, v)\) in the range \([0..1], [0..1]\)

to texture image coordinates:

\((u_{tex}, v_{tex})\) in the range \([0..w_{tex}], [0..h_{tex}]\)

We need to resample the texture:

\(T(u_{tex}, v_{tex}) \)

Thus, we seek to solve for: \(T(a, b) = T[i + \Delta_x, j + \Delta_y] \)

A common choice is **bilinear interpolation**:

\[
T[i + \Delta_x, j] = \frac{\Delta y}{\Delta x} T[i, j] + \frac{\Delta x}{\Delta y} T[i + 1, j]
\]

\[
T[i, j + \Delta_y] = \frac{\Delta x}{\Delta y} T[i, j] + \frac{\Delta y}{\Delta x} T[i, j + 1]
\]

\[
T[i + \Delta_x, j + \Delta_y] = \frac{\Delta y}{\Delta x} T[i, j] + \frac{\Delta x}{\Delta y} T[i + 1, j]
\]

\[
T[i, j + \Delta_y] = \frac{\Delta x}{\Delta y} T[i, j] + \frac{\Delta y}{\Delta x} T[i, j + 1]
\]

\[
T[i + \Delta_x, j] = \frac{\Delta y}{\Delta x} T[i, j] + \frac{\Delta x}{\Delta y} T[i + 1, j]
\]

\[
T[i, j + \Delta_y] = \frac{\Delta x}{\Delta y} T[i, j] + \frac{\Delta y}{\Delta x} T[i, j + 1]
\]

Q: What do you do when the texture sample you need lands between texture pixels?
Texture mapping and rasterization

Texture-mapping can also be handled in rasterization algorithms.

Method:
- Scan conversion is done in screen space, as usual
- Each pixel is colored according to the texture
- Texture coordinates are found by Gouraud-style interpolation

Note: Mapping is more complicated to handle perspective correctly.

Displacement mapping

Textures can be used for more than just color. In **displacement mapping**, a texture is used to perturb the surface geometry itself. Here’s the idea in 2D:

- These displacements "animate" with the surface
- In 3D, you would of course have \((u, v)\) parameters instead of just \(u\).

Suppose \(Q\) is a simple surface, like a cube. Will it take more work to render the modified surface \(Q'\)?

Bump and normal mapping

In **bump mapping**, a texture is used to perturb the normal:

- Use the original, simpler geometry, \(Q(u)\), for hidden surfaces
- Use the normal from the displacement map for shading:

\[
\tilde{N} = \text{normal}[\tilde{Q}(u)]
\]

\(Q(u)\)

An alternative to compute the normals from the original bump map height field and map them over the smooth surface. This is called **normal mapping**.

What artifacts in the images would reveal that bump (or normal) mapping is fake?
Displacement vs. bump mapping (cont’d)

Original rendering
Rendering with bump map wrapped around a cylinder

Bump map and rendering by Wijwer Aldinger

Solid textures

Q: What kinds of artifacts might you see from using a marble veneer instead of real marble?

One solution is to use solid textures:

- Use model-space coordinates to index into a 3D texture
- Like “carving” the object from the material

One difficulty of solid texturing is coming up with the textures.

Solid textures (cont’d)

Here’s an example for a vase cut from a solid marble texture:

Solid marble texture by Ken Perlin (Foley, 6-27)

Solid textures (cont’d)

in(x, y, z) = stripes(x)
shift(x, y, z) = K-noise(x, y, z)
out(x, y, z) = stripes(x + shift(x, y, z))

Increasing K-
Environment mapping

In environment mapping (also known as reflection mapping), a texture is used to model an object’s environment:

- Rays are bounced off objects into environment
- Color of the environment used to determine color of the illumination
- Environment mapping works well when there is just a single object – or in conjunction with ray tracing

This can be readily implemented (without interreflection) in graphics hardware using a fragment shader, where the texture is stored in a "cube map" instead of a sphere.

With a ray tracer, the concept is easily extended to handle refraction as well as reflection (and interreflection).

Summary

What to take home from this lecture:

1. The meaning of the boldfaced terms.
2. Familiarity with the various kinds of texture mapping, including their strengths and limitations.