

Robot ar	m implementation	
	rm can be displayed by keeping a global computing it at each step:	
Matrix M, M	<pre>4_model, M_view;</pre>	
main()		
(
M_view	<pre>= compute_view_transform();</pre>	
robot_a	arm();	
}		
robot_arm()		
f		
M_mode:	L = R_y(theta);	
M = M_1	<pre>riew*M_model;</pre>	
base()	,	
M_mode:	L = R_y(theta)*T(0,h1,0)*R_z(phi);	
M = M_1	<pre>riew*M_model;</pre>	
upper_a	1rm();	
M_mode:	L = R_y(theta)*T(0,h1,0)*R_z(phi)*T(0,h2,0)*R_z(psi);	
M = M_1	<pre>riew*M_model;</pre>	
lower_a	xrm();	
}		
Do the mati	ix computations seem wasteful?	7

Scene graphs

The idea of hierarchical modeling can be extended to an entire scene, encompassing:

- many different objects
- lights
- camera position

This is called a scene tree or scene graph.

Summary

Here's what you should take home from this lecture:

- All the **boldfaced terms**.
- How primitives can be instanced and composed to create hierarchical models using geometric transforms.
- How the notion of a model tree or DAG can be extended to entire scenes.
- How OpenGL transformations can be used in hierarchical modeling.
- How keyframe animation works.

15