Hierarchical Modeling

Zoran Popović
CSE 457
Spring 2019
Reading

Optional:

- Angel, sections 8.1 – 8.6, 8.8

Further reading:

- *OpenGL Programming Guide*, chapter 3
Symbols and instances

Most graphics APIs support a few geometric
primitives:

- spheres
- cubes
- cylinders

These symbols are instanced using an instance
transformation.

Q: What is the matrix for the instance transformation
above?
3D Example: A robot arm

Let’s build a robot arm out of a cylinder and two cuboids, with the following 3 degrees of freedom:

- Base rotates about its vertical axis by θ
- Upper arm rotates in its xy-plane by ϕ
- Lower arm rotates in its xy-plane by ψ

(Note that the angles are set to zero in the figures on the right; i.e., the parts are shown in their “default” positions.)

Suppose we have transformations $R_x(\cdot), R_y(\cdot), R_z(\cdot), T(\cdot, \cdot, \cdot)$.

Q: What matrix do we use to transform the base?

Q: What matrix product for the upper arm?

Q: What matrix product for the lower arm?
3D Example: A robot arm

An alternative interpretation is that we are taking the original coordinate frames...

...and translating and rotating them into place:
From parts to model to viewer

Model or object space

M_{model}

World space

M_{view}

Eye or camera space
Robot arm implementation

The robot arm can be displayed by keeping a global matrix and computing it at each step:

Matrix \(M, M_{\text{model}}, M_{\text{view}}; \)

```c
main()
{
    . . .
    M_{\text{view}} = \text{compute\_view\_transform}();
    \text{robot\_arm}();
    . . .
}
```

```c
\text{robot\_arm}()
{
    \text{M\_model} = \text{R\_y}(\text{theta});
    \text{M} = \text{M\_view}\times\text{M\_model};
    \text{base}();
    \text{M\_model} = \text{R\_y}(\text{theta})\times\text{T}(0,h_1,0)\times\text{R\_z}(\text{phi});
    \text{M} = \text{M\_view}\times\text{M\_model};
    \text{upper\_arm}();
    \text{M\_model} = \text{R\_y}(\text{theta})\times\text{T}(0,h_1,0)\times\text{R\_z}(\text{phi})\times\text{T}(0,h_2,0)\times\text{R\_z}(\text{psi});
    \text{M} = \text{M\_view}\times\text{M\_model};
    \text{lower\_arm}();
}
```

Do the matrix computations seem wasteful?
Instead of recalculating the global matrix each time, we can just update it \textit{in place} by concatenating matrices on the right:

\begin{verbatim}
 Matrix M_modelview;

 main()
 {
 . . .
 M_modelview = compute_view_transform();
 robot_arm();
 . . .
 }

 robot_arm()
 {
 M_modelview *= R_y(theta);
 base();
 M_modelview *= T(0,h1,0)*R_z(phi);
 upper_arm();
 M_modelview *= T(0,h2,0)*R_z(psi);
 lower_arm();
 }
\end{verbatim}
Hierarchical modeling

Hierarchical models can be composed of instances using trees or DAGs:

- edges contain geometric transformations
- nodes contain geometry (and possibly drawing attributes)

We will use trees for hierarchical models.

How might we draw the tree for the robot arm?
A complex example: human figure

Q: What’s the most sensible way to traverse this tree?
Using canonical primitives

Consider building the robot arm again, but this time the building blocks are canonical primitives like a unit cylinder and a unit cube.

What additional transformations are needed?
What does the hierarchy look like now?
Animation

The above examples are called **articulated models**:
- rigid parts
- connected by joints

They can be animated by specifying the joint angles (or other display parameters) as functions of time.
Key-frame animation

The most common method for character animation in production is **key-frame animation**.

- Each joint specified at various key frames (not necessarily the same as other joints)
- System does interpolation or **in-betweening**

Doing this well requires:

- A way of smoothly interpolating key frames: **splines**
- A good interactive system
- A lot of skill on the part of the animator
Scene graphs

The idea of hierarchical modeling can be extended to an entire scene, encompassing:

- many different objects
- lights
- camera position

This is called a **scene tree** or **scene graph**.
Summary

Here’s what you should take home from this lecture:

- All the **boldfaced terms**.
- How primitives can be instanced and composed to create hierarchical models using geometric transforms.
- How the notion of a model tree or DAG can be extended to entire scenes.
- How OpenGL transformations can be used in hierarchical modeling.
- How keyframe animation works.