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Reading

Optional reading:

¢ Angel and Shreiner: 3.1,3.7-3.11
+ Marschner and Shirley: 2.3,2.4.1-2.4.4,
6.1.1-6.14,6.2.1,6.3

Further reading:
+ Angel, the rest of Chapter 3
¢ Foley, et al, Chapter 5.1-5.5.
+ David F. Rogers and J. Alan Adams, Mathematical
Elements for Computer Graphics, 2" Ed.,
McGraw-Hill, New York, 1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one
space to pointsin another: (x’, y’, z) = f(x, y, 2).

These transformations can be very simple, such as
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.

Vector representation

We can represent a point, p = (x, ), in the plane or p = (x, y, z)
in 3D space:

+ as column vectors x

+ asrow vectors
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Canonical axes
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Vector length and dot products
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Vector cross products

Representation, cont.

We can represent a 2-D transformation M by a matrix
a b
c d

If p is a column vector, M goes on the left:

T

If p is a row vector, MT goes on the right:

p=pM”
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We will use column vectors.




Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M :
x" | | a b x
y' cd|vy

x'=ax+by

So:

y'=cx+dy

We will develop some intimacy with the elements a, b, ¢, d...

Identity

Suppose we choosea=d=1,b=c=0:

+ Gives the identity matrix:

1]

+ Doesn't move the points at all

Scaling

Suppose we set b = ¢ =0, but let  and d take on any
positive value:

+ Gives a scaling matrix:

a 0
0 d
+ Provides differential (non-uniform) scaling in x
and y: \
X =ax
y'=dy
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Suppose we keep b = ¢ = 0, but let either a or d go
negative.
Examples:
-1 0 1 0
0 1 0 -1
y y
A
x x
12




Now let's leave a = d = 1 and experiment with 5. ..

The matrix
1 b
01
gives:
x'=x+by
y'=y
y v
i i
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Effect on unit square

Let's see how a general 2 x 2 transformation M affects the
unit square:

ol Ha e o]

c

a b |01 10| |0 a a+tb b
c d 0011 0 ¢ c+d d
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Effect on unit square, cont.

Observe:

+ Origin invariant under M

¢ M can be determined just by knowing how the
corners (1,0) and (0,1) are mapped

¢ aandd give x- and y-scaling

¢ band c give x- and y-shearing
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Rotation

From our observations of the effect on the unit square,
it should be easy to write down a matrix for “rotation
about the origin”:

y v

Thus,

M=R©O)=
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Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

¢ Scaling

+ Rotation

¢ Reflection
+ Shearing

Q: Whatimportant operation does that leave out?
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Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a
third component to every point:

Adding the third “w” component puts us in
homogenous coordinates.

And then transform with a 3 x 3 matrix:

x' x [UNES x
yOET® y |5 01 g |y
w' 1 00 1 1

... gives translation!
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Anatomy of an affine matrix

The addition of translation to linear
transformations gives us affine transformations.

In matrix form, 2D affine transformations always

look like this:
a b ot
M=| ¢ d 1t A t
00 1 001

2D affine transformations always have a bottom
row of [0 0 1].

An“affine point”is a“linear point”with an added
w-coordinate which is always 1:

X
Pur = Pin || y
! 1

Applying an affine transformation gives another

affine point:
Apy +t
Mp g :{ plllﬂ J

19

Rotation about arbitrary points
Until now, we have only considered rotation about the

origin.

With homogeneous coordinates, you can specify a rotation
by 3 about any point q = [gy qy]T with a matrix.

Let’s do this with rotation and translation matrices of the
form R(6) and T(t), respectively.

1. Translate q to origin
2. Rotate

3. Translate back
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Points and vectors

Vectors have an additional coordinate of w = 0. Thus, a
change of origin has no effect on vectors.

Q: What happens if we multiply a vector by an affine
matrix?

These representations reflect some of the rules of affine
operations on points and vectors:

vector + vector —
scalar - vector —
point - point  —
point + vector —
point +point  —

scalar-vector + scalar-vector —

scalar-point + scalar-point  —

One useful combination of affine operations is:

P(t)=P,+t

Q: What does this describe?
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Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D
ones.

For example, scaling:

w
.
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1.

Translation in 3D

. 100 ¢ |,
y'7010t},y
z' 001 ¢ |7
1 0ooo0 1!
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Rotation in 3D (cont’d)
These are the rotations about the canonical axes:
Ru(a)=[
H@= 0o 0
0 cosa -sina 0
0 sina cosa 0
o o 0o 1
R(ml
)'(/f) cosf 0 sinf 0
0 1 0 0
—sinf 0 cosfB 0
L o o o 1
R.(n= cosy —siny 0 0 Use right hand rule
siny cosy 0 0
0 0 10
Lo 0 01
A general rotation can be specified in terms of a
product of these three matrices. How else might
you specify a rotation?
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Shearing in 3D

Shearing is also more complicated. Here is one
example:

x 1500/|Xx
Yolo1oo]|vy
z' 00 10|z
1 000 1]1

We call this a shear with respect to the x-z plane.
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Properties of affine transformations

Here are some useful properties of affine
transformations:

+ Lines map to lines

+ Parallel lines remain parallel

+ Midpoints map to midpoints (in fact, ratios are
always preserved)

p 0
> s"“\,
t r
ratio:M:E: pq
larl o]
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Summary

What to take away from this lecture:

-

All the names in boldface.
How points and transformations are represented.

How to compute lengths, dot products, and cross
products of vectors, and what their geometrical
meanings are.

-

-

-

What all the elements of a 2 x 2 transformation
matrix do and how these generalize to 3 x 3
transformations.

What homogeneous coordinates are and how
they work for affine transformations.

How to concatenate transformations.

The mathematical properties of affine
transformations.

-

-

-
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