
Impressionist Help Session



Overview

• Skeleton code

• OpenGL

• Qt

• Requirements
• Brushes

• Alpha blending

• Filter kernel

• Mean bilaternal filter

• Debugging hints

• Git tutorial (those who are familiar don’t have to stay)



Skeleton Code

brush

mainwindow

The data/information about brushes, 
filters, and paintviews

forms

Dialog boxes/forms for brushes, 
filters, and paintviews, etc …

filterpaintview

pointBrush lineBrush circleBrushscatterPointBrush scatterLineBrush scatterCircleBrush



• mainwindow
Handles all of the document related items like loading and saving, selecting 
brushes, and applying filters

• forms
Various UI components (the main window, brush & kernel dialog boxes, etc..)

• paintview
Handles the original image side of the window (left side) and the drawing side 
of the window the user paints on (right side)

• brush
The virtual class all brushes are derived from

• pointbrush
An example brush that draws points



OpenGL

• Good(ish) environment for PC 2d/3d graphics applications

• Extremely well documented… well not really!
• Lots of beginner tutorials online
• www.khronos.org/opengl/wiki/

• Keys to understanding how OpenGL works
• But sometimes has unfinished pages

• We will be using it throughout the quarter

• This project uses the basics of OpenGL
• Although you’re welcome to learn more on your own (and we encourage this), the focus of 

the project is on 2d image manipulation

http://www.khronos.org/opengl/wiki/


How OpenGL Works

• OpenGL draws primitives – lines, vertices, or polygons – subject to 
many selectable modes

• It can be modeled as a state machine
• Once a mode is set, it stays there until turned off

• It is procedural – commands are executed in the order they’re 
specified



Drawing a Primitive

// Let’s draw a filled triangle!

// first, set your color

glColor3f( red, green, blue );

// tell OpenGL to begin drawing

glBegin(GL_POLYGON);

// specify vertices A, B, and C.

glVertex2d( Ax, Ay );

glVertex2d( Bx, By );

glVertex2d( Cx, Cy );

// close the OpenGL block

glEnd();

// Force OpenGL to draw what you specified now

glFlush();



Drawing a Primitive

// Let’s draw a filled triangle!

// first, set your color

glColor3f( red, green, blue );

// tell OpenGL to begin drawing

glBegin(GL_POLYGON);

// specify vertices A, B, and C.

glVertex2d( Ax, Ay );

glVertex2d( Bx, By );

glVertex2d( Cx, Cy );

// close the OpenGL block

glEnd();

// Force OpenGL to draw what you specified now

glFlush();



Drawing a Polygon

// Let’s draw a filled triangle!

// first, set your color

glm::vec4 color;

color.r = red;

color.g = green;

Color.b = blue;

// set the vertices

Std::vector<Glfloat> vertex = {

Ax, Ay,

Bx, By,

Cx, Cy

};

// send the vertex data to the GPU buffer

glBufferData(GL_ARRAY_BUFFER, sizeof(float)*vertex.size(), vertex.data(), GL_STREAM_DRAW;

// Draw polygon

glDrawArrays(GL_TRIANGLES, 0, 3);



Drawing a Polygon

• A lot going on behind the scenes

• There is a lot of prep code needed to draw
• We need to create vertex array object that records all the state needed to 

draw a brush, bound every time we draw

• We need to create a vertex buffer object to hold the vertex positions and 
specify the format of the vertex data (GL_LINES, GL_TRIANGLES,
GL_QUADS, …many more!)

• We need to create a shader program (we did this for you)



Qt

• Enables developers to develop applications with intuitive user interfaces for multiple targets, 
faster than from scratch
• It’s a cross-platform GUI toolkit
• We needed a windowing toolkit to handle window/rendering context creation for OpenGL since we don’t 

want to do that ourselves
• FLTK (what we used to use) is lightweight, but has sparse features that don’t play as well with nicer, newer 

hardware

• Event-Driven (via callbacks as slot and signal pairings)

• We’re supporting Qt 5.7, although version 5.8 is the latest and works

• QtCreator IDE – installed with Qt

• mainwindow.cpp has several widget examples



Brushes

• Let’s make a triangle brush! (this will of course NOT count towards extra 
credit)

• Make a copy of pointbrush.h/cpp and rename to trianglebrush.h/cpp
• Right-click pointbrush.h/cpp -> Duplicate File…
• Right-click pointbrush_copy.h/cpp -> Rename…
• Rename to “trianglebrush.h/cpp”
• They should show up as part of the impressionist project

• Go through the trianglebrush.h/cpp code and change all pointbrush labels 
to trianglebrush labels



Brushes, cont’d

• Go to brush.h and add Triangle to the Brushes enum class

• Open forms/brushdialog.cpp, add <brushes/trianglebrush.h> to the 
includes.  Scroll down a bit, and add the triangle brush to the 
selectable brushes.



Brushes, cont’d

Modify the BrushMove method to draw a triangle instead of a 
point in trianglebrush.cpp

int size = GetSize();

std::vector<GLfloat> vertex = {

pos.x - (size * 0.5f), pos.y + (size * 0.5f),

pos.x + (size * 0.5f), pos.y + (size * 0.5f),

pos.x, pos.y - (size * 0.5f)

};

glBufferData(GL_ARRAY_BUFFER, sizeof(float) * vertex.size(), vertex.data(), GL_STREAM_DRAW);

glDrawArrays(GL_TRIANGLES, 0, 3);



Edge detection & Gradients

• The gradient is a vector that points in the direction of maximum 
increase of f

• 𝛻𝑓 =
𝜕𝑓

𝜕𝑥
ො𝑥 +

𝜕𝑓

𝜕𝑦
ො𝑦

• 𝜃 = atan2
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑥

• Use the sobel operator



Alpha Blending

• F𝑛𝑒𝑤 = 𝛼𝐶 + 1 − 𝛼 F𝑜𝑙𝑑

If 𝛼 = 0.5, 𝐶 =

255
255
255
255

, F𝑜𝑙𝑑 =

255
0
0
128

Then F𝑛𝑒𝑤 =

?
?
?
?



Alpha Blending

• F𝑛𝑒𝑤 = 𝛼𝐶 + 1 − 𝛼 F𝑜𝑙𝑑

If 𝛼 = 0.5, 𝐶 =

255
255
255
255

, F𝑜𝑙𝑑 =

255
0
0
128

Then F𝑛𝑒𝑤 =

?
?
?
?



Alpha Blending

• F𝑛𝑒𝑤 = 𝛼𝐶 + 1 − 𝛼 F𝑜𝑙𝑑

If 𝛼 = 0.5, 𝐶 =

255
255
255
255

, F𝑜𝑙𝑑 =

255
0
0
128

Then F𝑛𝑒𝑤 = 0.5

255
255
255
255

+ 1 − 0.5

255
0
0
128

=

128
128
128
128

+

128
0
0
64

=

255
128
128
192



Alpha Blending

• F𝑛𝑒𝑤 = 𝛼𝐶 + 1 − 𝛼 F𝑜𝑙𝑑

If 𝛼 = 0.5, 𝐶 =

255
255
255
255

, F𝑜𝑙𝑑 =

255
0
0
128

Then F𝑛𝑒𝑤 =

255
128
128
192



Filters

• Remember how filter kernels are applied to an image
• Look at the sample solution.  How does it apply a filter?

• What could go wrong?

• What cases do you need to handle?

• We will be looking closely at your filter kernel



Use GIMP/Photoshop to see filters in action



3x3 Mean Box Filter



Debugging

• Debugging in Qt
• Use Qt’s built-in debugger (works just like VS, Eclipse, or just about any IDE you’ve used).

• Print out debugging info
• #include <QDebug>
• Use qDebug() when you want to display information

qDebug() << “debugging info: ” << debugInfo;

• Rebuild the project
• Clean → Make → Build the Project

• Debugging OpenGL
• It might help to check for errors after each call.  When it seems like nothing is happening, OpenGL 

is often returning an error message somewhere along the line.
• #include <glinclude.h>
• Use GLCheckError();



Git

• Resources
• Basics for this course:

https://courses.cs.washington.edu/courses/cse457/17sp/src/help.php

• Official documentation:
https://git-scm.com/book/en/v2

git --help <command>

https://courses.cs.washington.edu/courses/cse457/17sp/src/help.php
https://git-scm.com/book/en/v2


Git, cont’d

• Starting
• navigate to the directory you want to work in and run

$ git clone git@gitlab.cs.washington.edu:cse457-17sp-impressionist/YOUR_REPO.git
impressionist

• This clones your repository into a working directory named “impressionist”

• Working
• You will want to periodically check your code in, either to avoid disaster or to rollback 

broken code to an earlier working version, run
$ git add --all
$ git commit -m "added a triangle brush“
$ git push

• If you made any changes remotely, run
$ git pull



Git, cont’d

• Finished, Code turn-in
• Build your executable in Release Mode
• Be sure to have everything properly committed and pushed to your GitLab

repository first
$ git status
On branch master
Your branch is up-to-date with “origin/master”
Nothing to commit, working directory clean

• Tag it
$ git tag SUBMIT
$ git push –tags

• Clone your tagged repo into a SEPARATE directory and test running the 
program


