Parametric surfaces

Brian Curless
CSE 457
Spring 2017

Mathematical surface representations

• Explicit \(z = f(x, y) \) (a.k.a., a “height field”)
 • what if the curve isn’t a function, like a sphere?

• Implicit \(g(x, y, z) = 0 \)

• Parametric \(S(u, v) = (x(u, v), y(u, v), z(u, v)) \)
 • For the sphere:
 \[
 \begin{align*}
 x(u, v) &= r \cos \pi u \sin \pi v \\
 y(u, v) &= r \sin \pi v \sin \pi u \\
 z(u, v) &= r \cos \pi u
 \end{align*}
 \]

As with curves, we’ll focus on parametric surfaces.

Reading

Optional reading:
• Angel and Shreiner readings for “Parametric Curves” lecture, with emphasis on 10.1.2, 10.1.3, 10.1.5, 10.6.2, 10.7.3, 10.9.4.
• Marschner and Shirley, 2.5.

Further reading

Constructing surfaces of revolution

Given: A curve \(C(v) \) in the \(xy \)-plane:

\[
\Theta = \pi u \\
\phi = 2\pi v
\]

\[
\begin{bmatrix}
C_v \\
C_{vv}
\end{bmatrix} = \begin{bmatrix}
0 \\
1
\end{bmatrix}
\]

Let \(R_y(\theta) \) be a rotation about the \(y \)-axis.

Find: A surface \(S(u, v) \) which is \(C(v) \) rotated \(\Theta = 2\pi u \) about the \(y \)-axis, where \(u, v \in [0, 1] \).

Solution: \(S(u, v) = R_y(2\pi u)C(v) \)
General sweep surfaces

The **surface of revolution** is a special case of a swept surface.

Idea: Trace out surface $S(u,v)$ by moving a profile curve $C(u)$ along a trajectory curve $T(v)$.

![Diagram](image)

More specifically:
- Suppose that $C(u)$ lies in an (x_c, y_c) coordinate system with origin O_c.
- For every point along $T(v)$, lay $C(u)$ so that O_c coincides with $T(v)$.

Orientation

The big issue:
- How to orient $C(u)$ as it moves along $T(v)$?

Here are two options:
1. **Fixed** (or static): Just translate O_c along $T(v)$.
2. Moving. Use the Frenet frame of $T(v)$.
 - Allows smoothly varying orientation.
 - Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve $T(v)$, we want to attach a smoothly varying coordinate system.

![Diagram](image)

To get a 3D coordinate system, we need 3 independent direction vectors.
- Tangent: $\mathbf{t}(v) = \text{normalize}[T'(v)]$
- Binormal: $\mathbf{b}(v) = \text{normalize}[T'(v) \times T''(v)]$
- Normal: $\mathbf{n}(v) = \mathbf{b}(v) \times \mathbf{t}(v)$

As we move along $T(v)$, the Frenet frame $(\mathbf{t}, \mathbf{b}, \mathbf{n})$ varies smoothly.

Frenet swept surfaces

Orient the profile curve $C(u)$ using the Frenet frame of the trajectory $T(v)$:
- Put $C(u)$ in the normal plane.
- Place O_c on $T(v)$.
- Align x_c for $C(u)$ with \mathbf{b}.
- Align y_c for $C(u)$ with $-\mathbf{n}$.

If $T(v)$ is a circle, you get a surface of revolution exactly!
Degenerate frames

Let’s look back at where we computed the coordinate frames from curve derivatives:

Where might these frames be ambiguous or undetermined?

Variations

Several variations are possible:

- Scale \(C(u) \) as it moves, possibly using length of \(T(v) \) as a scale factor.
- Morph \(C(u) \) into some other curve \(\tilde{C}(u) \) as it moves along \(T(v) \).
- ...

Tensor product Bézier surfaces

Given a grid of control points \(V_{ij} \), forming a control net, construct a surface \(S(u,v) \) by:

- treating rows of \(V \) (the matrix consisting of the \(V_{ij} \)) as control points for curves \(V_0(u),...,V_n(u) \).
- treating \(V_0(u),...,V_n(u) \) as control points for a curve parameterized by \(v \).

Tensor product Bézier surfaces, cont.

Let’s walk through the steps:

Which control points are always interpolated by the surface?
Polynomial form of Bézier surfaces

Recall that cubic Bézier curves can be written in terms of the Bernstein polynomials:

$$Q(u) = \sum_{i=0}^{3} V_i b_i(u)$$

A tensor product Bézier surface can be written as:

$$S(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{n} V_{ij} b_i(u) b_j(v)$$

In the previous slide, we constructed curves along u, and then along v. This corresponds to re-grouping the terms like so:

$$S(u,v) = \sum_{i=0}^{n} \left(\sum_{j=0}^{n} V_{ij} b_i(u) \right) b_j(v)$$

But, we could have constructed them along v, then u:

$$S(u,v) = \sum_{i=0}^{n} \left(\sum_{j=0}^{n} V_{ij} b_j(v) \right) b_i(u)$$

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C^2 continuity and local control, we get B-spline curves:

- treat rows of B as control points to generate Bézier control points in u.
- treat Bézier control points in u as B-spline control points in v.
- treat B-spline control points in v to generate Bézier control points in u.

Tensor product B-spline surfaces

Another example:

Which B-spline control points are always interpolated by the surface?
NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.

Trimmed NURBS surfaces

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:

We can do this by trimming the u-v domain.

- Define a closed curve in the u-v domain (a trim curve)
- Do not draw the surface points inside of this curve.

It’s really hard to maintain continuity in these regions, especially while animating.

Summary

What to take home:

- How to construct swept surfaces from a profile and trajectory curve:
 - with a fixed frame
 - with a Frenet frame
- How to construct tensor product Bézier surfaces
- How to construct tensor product B-spline surfaces