Parametric surfaces

Brian Curless
CSE 457
Spring 2017
Reading

Optional reading:

- Angel and Shreiner readings for “Parametric Curves” lecture, with emphasis on 10.1.2, 10.1.3, 10.1.5, 10.6.2, 10.7.3, 10.9.4.
- Marschner and Shirley, 2.5.

Further reading

Mathematical surface representations

- Explicit $z = f(x, y)$ (a.k.a., a “height field”)
 - what if the curve isn’t a function, like a sphere?

- Implicit $g(x, y, z) = 0$

- Parametric $S(u, v) = (x(u, v), y(u, v), z(u, v))$
 - For the sphere:
 $x(u, v) = r \cos 2\pi v \sin \pi u$
 $y(u, v) = r \sin 2\pi v \sin \pi u$
 $z(u, v) = r \cos \pi u$

As with curves, we’ll focus on parametric surfaces.
Constructing surfaces of revolution

Given: A curve $C(v)$ in the xy-plane:

$$C(v) = \begin{bmatrix} C_x(v) \\ C_y(v) \\ 0 \\ 1 \end{bmatrix}$$

Let $R_y(\theta)$ be a rotation about the y-axis.

Find: A surface $S(u, v)$ which is $C(v)$ rotated about the y-axis, where $u, v \in [0, 1]$.

Solution: $S(u, v) = R_y(2\pi u)C(v)$
General sweep surfaces

The **surface of revolution** is a special case of a **swept surface**.

Idea: Trace out surface $S(u, v)$ by moving a **profile curve** $C(u)$ along a **trajectory curve** $T(v)$.

More specifically:

- Suppose that $C(u)$ lies in an (x_c, y_c) coordinate system with origin O_c.
- For every point along $T(v)$, lay $C(u)$ so that O_c coincides with $T(v)$.
Orientation

The big issue:

- How to orient $C(u)$ as it moves along $T(v)$?

Here are two options:

1. **Fixed** (or **static**): Just translate O_c along $T(v)$.

2. Moving. Use the **Frenet frame** of $T(v)$.
 - Allows smoothly varying orientation.
 - Permits surfaces of revolution, for example.
Frenet frames

Motivation: Given a curve $T(\nu)$, we want to attach a smoothly varying coordinate system.

To get a 3D coordinate system, we need 3 independent direction vectors.

- **Tangent:** $t(\nu) = \text{normalize}[T'(\nu)]$
- **Binormal:** $b(\nu) = \text{normalize}[T'(\nu) \times T''(\nu)]$
- **Normal:** $n(\nu) = b(\nu) \times t(\nu)$

As we move along $T(\nu)$, the Frenet frame (t, b, n) varies smoothly.
Frenet swept surfaces

Orient the profile curve $C(u)$ using the Frenet frame of the trajectory $T(v)$:

- Put $C(u)$ in the normal plane.
- Place O_c on $T(v)$.
- Align x_c for $C(u)$ with b.
- Align y_c for $C(u)$ with $\mathbf{-n}$.

If $T(v)$ is a circle, you get a surface of revolution exactly!
Degenerate frames

Let’s look back at where we computed the coordinate frames from curve derivatives:

Where might these frames be ambiguous or undetermined?
Variations

Several variations are possible:

- Scale $C(u)$ as it moves, possibly using length of $T(v)$ as a scale factor.
- Morph $C(u)$ into some other curve $\tilde{C}(u)$ as it moves along $T(v)$.
- ...

![Image of variations]

10
Given a grid of control points \(V_{ij} \), forming a control net, construct a surface \(S(u, v) \) by:

- treating rows of \(V \) (the matrix consisting of the \(V_{ij} \)) as control points for curves \(V_0(u), \ldots, V_n(u) \).
- treating \(V_0(u), \ldots, V_n(u) \) as control points for a curve parameterized by \(v \).
Tensor product Bézier surfaces, cont.

Let’s walk through the steps:

Which control points are always interpolated by the surface?

4 corners
Polynomial form of Bézier surfaces

Recall that cubic Bézier curves can be written in terms of the Bernstein polynomials:

\[Q(u) = \sum_{i=0}^{n} V_i b_i(u) \]

A tensor product Bézier surface can be written as:

\[S(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{n} V_{ij} b_i(u)b_j(v) \]

In the previous slide, we constructed curves along \(u \) and then along \(v \). This corresponds to re-grouping the terms like so:

\[S(u, v) = \sum_{j=0}^{n} \left(\sum_{i=0}^{n} V_{ij} b_i(u) \right) b_j(v) \]

But, we could have constructed them along \(v \), then \(u \):

\[S(u, v) = \sum_{i=0}^{n} \left(\sum_{j=0}^{n} V_{ij} b_j(v) \right) b_i(u) \]
Tensor product B-spline surfaces

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C^2 continuity and local control, we get B-spline curves:

- treat rows of B as control points to generate Bézier control points in u.
- treat Bézier control points in u as B-spline control points in v.
- treat B-spline control points in v to generate Bézier control points in u.
Tensor product B-spline surfaces, cont.

Which B-spline control points are always interpolated by the surface? *None*
Tensor product B-splines, cont.

Another example:
NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.
Trimmed NURBS surfaces

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:

We can do this by trimming the u-ν domain.

- Define a closed curve in the u-ν domain (a trim curve)
- Do not draw the surface points inside of this curve.

It’s really hard to maintain continuity in these regions, especially while animating.
Summary

What to take home:

- How to construct swept surfaces from a profile and trajectory curve:
 - with a fixed frame
 - with a Frenet frame
- How to construct tensor product Bézier surfaces
- How to construct tensor product B-spline surfaces